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The modification of the internal structure of nucleons inside the nucleus is investigated within the
context of a constituent quark model, in which quarks interact forming bound clusters that act as
nucleons. The elastic form factor, the momentum distribution, the correlation function, and the
Coulomb sum rule are calculated. The contribution to these structure functions arising from nu-
cleon degrees of freedom is identified by means of an impulse approximation, in which the quark
structure of nucleons is assumed to be unaffected by other nucleons, and the dynamics of nucleons is
given by an effective theory, extracted from our quark model. The effect of the modification of the
nucleon is found to be noticeable on the elastic form factor at large momentum transfer, and on the
Coulomb sum rule. A cluster approximation is also used to study the extent to which these effects

are due to exchange of quarks.

I. INTRODUCTION

There is considerable interest in finding evidence for
the influence of the nuclear environment on the internal
structure of nucleons. One of the most promising tools is
the scattering of weak probes, e.g., electrons by nuclear
targets. There are already two unexpected experimental
results that may well be the outcome of modification of
the nucleon’s structure in the nuclear medium: the EMC
effect (for a review, see Ref. 1) and the depletlon of the
longitudinal response function of nuclear targets.’

The structure functions for elastic and inelastic scatter-
ing contain information on both quark and nuclear de-
grees of freedom. (For this work, the substructure of the
nucleus is assumed to be given in terms of quark degrees
of freedom.) The problem is how to separate both contri-
butions to the structure function. What is usually done is
to compare the experimental data to the results from the
impulse approximation with free-nucleon structure; the
differences are assigned to the modification of nucleon
structure in the nucleus. One is left with the problem of
interpreting any effect in terms of the dynamics ofv the
system.

In this work we use a dynamlcal model of a nuclear
system to test the sensitivity of scattering structure func-
tions to nuclear effects on the internal structure of nu-
cleons. Having a dynamical model, one can investigate
the causes of any effects obtained. However, our model

. does not attempt to incorporate all the features of the

theory of strong interactions. . _

The model nucleus studied here is a system of quarks
in which bound clusters of quarks act as nucleons. The
spectrum &f the system includes nuclear excitations, exci-
tations of the internal structure of clusters, and even clus-
ter breakup. We report on the results for a deuteronlike
system, that is, a system with just enough quarks to form
two nucleons.

The quark system has been chosen to be of the type
that can be solved exactly using the Bethe ansatz tech-
nique (Sec. ITI): a one-dimensional, nonrelativistic gas of
fermions with a two-body, zero-range interaction. In a
previous work? this same kind of system was employed to
study the ground state of nuclear matter in terms of clus-
ters of quarks. The results of that work provided some
knowledge of the spectrum of the nuclear system under
consideration.

In order to carry out the study of scattering from the
nuclear system, we need also a more detailed knowledge
of the states of the system in the finite case (finite in both
number of quarks and length). These states can be ob-
tained using the Bethe ansatz method, which in this case
is well known.*> However, this form (in configuration
space) of the states makes the calculation of structure and
correlation functions very difficult. We will adopt anoth-
er approach proposed by Sasaki and Kebukawa® which
consists in the use of momentum representation and
second quantization. By reducing the results of Ref. 7 to
a simpler form, we are able to calculate correlation and
structure functions in an analytical way (details are given
in Refs. 8 and 9).

For the purpose of our study, the results obtained from
the quark model are regarded as “‘experimental” data.
The part that is due to nuclear degrees of freedom will be
“predicted” by introducing a nucleon impulse approxi-
mation based on the assumption that the structure of nu-
cleons is not affected by the nucleus. The nuclear states
are given by an effective Hamiltonian which reproduces
the energy spectrum of the quark model, corresponding
to states of nucleons without internal excitation. The
differences between the exact results of the model and the
“theoretical” predictions from the impulse approxima-
tion are the signature of modification of nucleon struc-
ture by the nucleus.

The impulse approximation just mentioned ignores the
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exchange of quarks between nucleons due to the antisym-

metry of the nuclear state in quark variables. This (Pauli)
exchange can be included by introducing a cluster ap-
proximation, based on the impulse approximation for the
nuclear wave functions. Now, however, the state is com-
pletely antisymmetrized under exchange of quarks among
the nucleons. This approach has been used by several au-
thors'® to investigate the éffects of quark exchange, but
with nucleon wave functions unconnected to quark dy-
namics (e.g., harmonic oscillators). However, our
method has the advantage that the effective theory that
we use is derived from our model quark Hamiltonian, so
that we can study other quark effects in addition to Pauli
exchange.

The method of study that we describe here follows the
same lines of another model which has been recently
developed and published in a series of papers.'! The de-
tails of that model differ considerably from ours in the
quark interaction, mechanism for confinement, and
definition of an effective theory. The methods of solution
also differ, in that we use analytic methods, in contrast to
the Monte Carlo techniques of Ref. 11. We have taken a
similar approach to theirs in comparing quark results to
a nucleon impulse approximation.

We will start by introducing the model in Sec. II. Sec-
tion III contains a brief summary of the Bethe ansatz
technique as found in the literature. In Sec. IV we study
the systems of one and two clusters, which constitute our
model nucleon and deuteron, and we derive the complex
solutions to the Bethe equations of four fermions in the
finite case. The momentum representation of the states
of the model deuteron is introduced in Sec. V. These
states are then used in Sec. VI to calculate the experimen-
tal value of the structure functions. The effective theory
(with nucleon degrees of freedom) is extracted in Sec.
VII, and used in Secs. VIII and IX to calculate the
theoretical predictions from the impulse and cluster ap-

_proximation. Conclusions are given in Sec. X.

II. QUARK MODEL OF THE NUCLEUS

We consider a model system of N fermion quarks mov-
ing in one spatial dimension, interacting through an at-
tractive zero-range potential. The nonrelativistic Hamil-
tonian is (here we use natural units with ¢ =#=1)

NPy

i=1 i<j

in the coordinates x; and momenta p; of the quarks, with
mass m; the strength of the potential is given by g, which
is negative. We include only one internal degree of free-
dom carried by the quarks, which we call color. The
solutions of the Schrédinger equation for such a system
are obtainabledrom the Bethe ansatz, as given in the fol-
lowing section. We first describe a number of properties
of the states of this system, which characterize our mod-
el.

If there are n_ different colors, then bound states of up
to n. quarks exist; the bound state of n =n, quarks is
color neutral [a singlet with respect to the SU(n,) color
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symmetry]. These color-neutral bound states or clusters
are our model nucleons. A nuclear system consists of 4
such nucleons, or N=n, 4 quarks, and is also color neu-
tral. However, the effective interaction of these nucleons
is repulsive, and so the nuclear system has no bound
states.

We therefore confine the N quarks within a length L by
imposing periodic boundary conditions on the quark vari-
ables. This has the following properties: First, the solu-
tions of the Schriodinger equation are still of the Bethe
ansatz form, with discrete quantum numbers (Bethe mo-
menta). Second, the system is translationally invariant,
which is appropriate for the applications of scattering
theory, used later in this work. Third, since the quarks
are confined within a length L, the color is also confined
to the nuclear size, even though individual nucleons may
dissociate within a nucleus.

We shall take the number of colors n, =2. It would be
natural to take n,=3, in correspondence with QCD, for
which the nucleons have fermionic behavior. This has
been done previously® for a model of the ground state of
nuclear matter. However, the system with n, =2 actually
has very similar dynamics to that with n,=3, even
though the n, =2 clusters are quasibosons, in the sense of
having even properties under exchange of coordinates.
(This can be seen by comparing Ref. 3 with the results for
n.=2 in the attractive case given by Gaudin.*) The
reason for the similarity is the repulsion among clusters,
which makes the spectrum fermionic, independent of
statistics. Since the n.=2 case is considerably more
tractable for the calculation of structure functions, we
shall use n, =2 in this work.

We take the A4 =2 system, with four quarks, as our
model nuclear target; in the ground state, it resembles a
deuteron. The excitation properties of this system are
sufficiently complex to allow for investigation of both
quark and nuclear degrees of freedom. This will become
clear by describing the full excitation spectrum.

First, one nucleon cluster (without boundary condi-

tions) has one bound state, color singlet, as mentioned
earlier. The binding energy of our model nucleon is
Ey=—B/2 [see (17) below], with the unit of energy B
defined as in (8). There is a continuum of unbound two-
quark states, E >0, color neutral (but singlet or triplet),
as well as a continuum of cluster states with momentum
Q and energy E,=—B /2+Q?/4m. With the periodic
boundary conditions on length L, the spectrum becomes
discrete, with total momentum Q quantized. Again, there
is one bound state, E, <0, but with E,7 — B /2, because
of effects of the boundary condition [see Fig. 1 and, after
(17)]. There are excited states (Q70) of one cluster, as
well as two quark excited states, whose energies depend
on L.

Next, for the N =4 system, with no boundary condi-
tion, the spectrum includes states of two moving clusters,
one cluster and two unbound quarks, or four unbound
quarks, all states in the continuum, with total energy

E=— %B +kinetic energy , (2)
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FIG. 1. Bethe momentum k of the two-boson system or the
two-fermion color singlet, in units of 27 /L. The dashed lines
correspond to purely imaginary k, in which case ik has been
plotted. Positive values of the dimensionless parameter L /A
correspond to attractive interaction, while a repulsive interac-
tion leads to L /A negative.

where v is the number of clusters (2,1,0). With the impo-
sition of the periodic boundary condition, the spectrum
becomes discrete, the energies depending on L. One can
classify the spectrum by the number of clusters v; the en-
ergies will approach (2) as L — «. The properties just
discussed for the N =2 and 4 systems are shown explicit-
ly in Sec. IV.

III. BETHE ANSATZ

A. Infinite length

The Hamiltonian (1) represents one of the few exam-
ples found in the literature of a system of particles in-
teracting via a two-body potential, which can be solved
exactly.!? @audin* and Yang® have shown how to con-
struct the eigenstates of this Hamiltonian in the case of
fermions with one internal degree of freedom (they con-
sidered fermions with spin J which is equivalent to our
model in the two-color case).

The spatial wave function may bé expressed as a finite
superposition of plane waves in the form
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Ylxy, .. xy)=WX) Y a,0,.(xy,...,xy)
,u,vESN

N

l.zlk“jx"j
j=

Xexp , (3)

where u=(u,...,uy) and v=(v,,...,vy) are permu-
tations of order N, and the sums run over the N!
permutations of the group Sy. The step function
0,(x,,...,xy) has been defined for each permutation v
of the coordinates as

)

1, ifxv1<xv2< ce <X
ev(xl,...,xN)E 0

The function W(X)=exp(iQX) with X, the center-of-mass
coordinate, and Q, the total momentum of the system,
has been factored for convenience.

The wave function (3) gives the exact form of the eigen-
states of the Hamiltonian (1): it is referred to as the Bethe
ansatz in the literature. The set of numbers
{ki,ky, ..., ky} are called Bethe momenta. They com-
pletely define the states and have the following proper-
ties: All of them must be different, and their sum must be
zero, while the sum of their squares is related to the
eigenstates of the Hamiltonian by the relation

YN

otherwise . @)

_ 1
E= o . (5)

0> I,
N TEk
P

The first term is the translational energy of the system as
a whole, and the second term gives the energy in the
frame moving with the system.

In the repulsive case (g positive), any set of N different
real numbers {k;,k,,...,ky} leads to an eigenstate;
therefore, the energy spectrum is a continuum of positive .
numbers. On the other hand, in the attractive case, the
momenta k can come in complex-conjugate pairs with a
discrete imaginary part, leading to a spectrum with a
discrete negative part. The (N!)? coefficients a,, are com-
pletely specified by the condition that 1, as defined by (3),
be an eigenfunction of the Hamiltonian (1) and by impos-
ing the symmetries of an irreducible representation of the
symmetric group over the function 1.3

There are several other examples of integrable systems
in quantum field theory which have solutions of the Bethe
ansatz type. An alternate, more rigorous approach to
solving integrable systems is the inverse scattering method
(for a discussion of that method and a comparison with
the Beth ansatz technique, see Ref. 13). However, for the
case that interests us—a fermionic field with an internal
degree of freedom and inside a finite length—inverse
scattering techniques have not been extended yet, and the
only approach found in the literature is the Bethe ansatz.

B. Finite length

If the particles are confined to a finite length L with
periodic boundary conditions, the Bethe momenta are no
longer arbitrary, but are the solutions of a system of cou-
pled equations. The system of equations has been derived
and discussed in Refs. 4 and 5; however, we find it con-
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venient for our calculations later on this paper to rewrite
them in a system of dimensionless units.

We will give the momenta k; and Q as multiples of
27 /L. Note that the periodic boundary condition then
requires Q to be an integer, while the k; can in principle
be any real numbers (or even complex in the attractive
case), as long as they are different and their sum vanishes.
The energy (5) can then be written as

277'}\« Q 2 N 2
E=B|— = k: 6
3 N +j§] ; (6)
where the constants A and B have been defined as
r=—-1 | ™)
mg
mg
= 8
B= 5 (8)

In the case of attractive interaction, g is negative and the

~constant A is positive; it is a length associated with the
system, and as we will see below, it gives the size of the
clusters. The constant B has units of energy, and as we
will show shortly, it is twice the binding energy of a clus-
ter. For a given value of the dimensionless parameter
L /A, the constants B and 1/A fix the energy and momen-
tum scales, respectively. If the dimensionless momenta
are multiplied by 27A /L, then they are given in units of
1/A; to find their value in natural units, one must know
the value of A in natural units. The energy can be given
in units of B, through (6).

The equations that determine the allowed values of k;
take different forms depending on the symmetry of the
wave function (3). In the case of fermions with two
colors, the wave function can have the space symmetries
of the irreducible representations [1V] or [2M,1Y ~2M]
(that is, Young tableaux with one or two columns). For
the symmetry [1V] (completely antisymmetric wave func-
tion), the momenta k ; become

ki=n;—¢. 9)

Here the numbers n; are all different integers whose aver-
age € can take any of the following N values:

1Y 1 2 N—1
€=— - 1
Nén, O,N,N, N (10)

The total momentum Q must be an integer, but it is not
completely arbitrary since it depends on €:

Q=Nl(ekq) (q integer) . (11

This solution is the same as for a system of noninteract-
ing fermions (in the zero-momentum frame and dimen-
sionless units).

Next, for the symmetry [
that determine k; are (Refs. 4 and 5)

oM 1N =M the equations
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M
ki=n;—e+ 3 flk;—A,), j=1,...
a=1

N
2 flk=A)=n+ F fl—5—

j=1 B=1(+#a)

where we have defined the function f(z) as

_ 1 |47z
flz)= ﬂcot 7

) (14)

with a branch cut along the segment from i to —i, and
the real part of its image between —1 and 1. The M
numbers A are certain auxiliary real momenta, and the .
numbers 7, are all integers and had to be introduced in
order to ensure that the real part of both sides in the
second equation are within the same interval (m —3m
+1) for integer m.

Gaudin* has studied the solution of these equations in
the attractive case and for small interaction strength g.
He has proven that for a given set of integers
{ny,...,ny} there is a unique solution {k,...,ky}.
The quantum numbers n; can be equal by pairs, and there
can be up to M pairs. Each pair leads to a pair of com-
plex Bethe momenta which are complex conjugate of
each other.

IV. QUARK MODEL OF THE DEUTERON

We apply the results of the previous section to the two
cases mentioned in Sec. II: n =2 and 4, which lead to our
model nucleon and deuteron. There are three physical
parameters in the model: the nuclear length L, the mass
of the quarks m, and the strength of the interaction g.

“The functional form of the states with a given set of

quantum numbers is completely determined by the di-
mensionless parameter L /A. As we mentioned above,
the parameters A and B are needed to transform from di-
mensionless units into natural units. Since the Hamil-
tonian commutes with color operators, its eigenstates can
be classified according to the color-irreducible represen-
tation to which they belong. States in a Q2C+1)-
dimensional color multiplet are attained only if there are
at least M =(N /2 — C) particles of each of the two colors.
The configuration space part of the wave function must
then have the symmetries of the Young tableau
[2M’ 1N —2M ].

If the number of quarks is N =2, then the states can
belong either to a color singlet or triplet. The spatial
wave function for the triplet must be completely antisym-
metric, and then the Bethe momenta are those of the
noninteracting system (9).  In the color singlet, k, and &,
are given by (12) and (13) with n =2 and M =1; the result
is identical to the case of two bosons.!*> The Bethe mo-
menta are k|, = —k, =k, with k defined by the equation

k=é+f(k). (15)

Figure 1 shows the solution for the lowest values of the
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integer quantum number / as a function of the dimension-
less parameter L /A. When the interaction is repulsive
(negative L /A), all solutions are real. As the interaction
strength g decreases, k approaches the values of the
noninteracting system. If the interaction is attractive
(L /A positive), the momentum k for / =0 becomes purely
imaginary (dashed line in Fig. 1). That solution consti-
tutes a cluster of the two fermions, which is the ground
state of our model nucleon. Note that if the interaction is
attractive enough such that L /A is greater than 4, the
state / =1 also becomes a bound system with complex k.
This second bound state is not just the same cluster
ground state with a momentum boost; the states with
I=0and 1 cannot take the same values of total momen-
tum, since / =Q (mod2). The existence of a second bound
state is a peculiarity introduced by the periodic boundary
conditions.!?

The free nucleon is obtained if the limit L — oo is tak-
en. In that limit, @ = —ik becomes L /4wA (or 1/2A in
natural units), and the density of the free nucleon, de-
rived from the Bethe ansatz, is
= 2o | (16)
therefore, the parameter A gives a good estimate of the
size of the isolated nucleon, and L /A is the ratio of the
nuclear size to the size of the free nucleon. From (6), the
binding energy of the free nucleon is
2

p(r)

27A

L a’=—7

_B an

E,=—2B
0 2

However, for finite L /A, E, —B /2 (see Fig. 1).

The system of N =4 quarks can form a color singlet,
triplet, or quintuplet; the corresponding spatial wave
functions must have symmetry [2,2], [2,1,1], and [1,1,1,1].
If the four quantum numbers n ; are all different, the solu-
tions to (12) and (13) correspond to “free” quarks: no
clusters. However, as Gaudin has shown* for the limit
g—0" (weak attraction), the equations also admit solu-
tions in which the n; can be equal by pairs: Each pair
represents a cluster.

In general, for any value of g <0, the equations for. the
momenta of the two-cluster system, which constitutes our
model deuteron, are derived from (12) and (13), when the
quantum numbers are equal by pairs. Since n;=n, and
n3=ny, (10) requires that €e=0 or 1. The coupled equa-
tions become

=%+f(K+A)+f(K—A), (18)
FIM=2Re[f(K+A)—f(K—A)], (19)

There are two pairs of complex-conjugate momenta. The
imaginary parts of each complex-conjugate pair are the
same; consequently, the internal structure of the two
clusters is identical. There is only one internal quantum
number m which is a positive integer such that
m(mod2)=2e. The states are labeled by the numbers m
and Q. According to (11), the total momentum of the
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FIG. 2. Bethe momentum of the deuteron system (units of
2m/L). (a) The real part is shown for the first four states. (b)
The imaginary part is shown for the ground state (solid line);
the dashed line is the Bethe momentum «a of one cluster. The
imaginary part of K in the excited states lies between the solid
and dashed lines, and approaches the dashed line as the quan-
tum number m increases.
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two-cluster system can take the values
Q=4g+2m(mod2) (q integer) ; (21)

therefore, there are two classes of solutions correspond-
ing to even and odd quantum numbers m. Our model
deuteron ground state is the lowest-energy two-cluster
state in the c.m. frame (Q =2, m =1); this is the lowest-
energy N =4 state in that frame.

We have solved Egs. (18) and (19) using the Newton-
Raphson algorithm. The results for some values of the
parameter L /A and the quantum number m are shown in
Fig. 2. Note that the total momenta of the clusters are
2 Re(K). Comparing Fig. 2(a) with Fig. 1, it can be
seen that the curves for 2 Re(K) are very similar to the
subset / =2,4,6, . .. of the curves of k for the system of
two bosons in the latter figure. The similarity between
the spectra of the two clusters and the system of two bo-
sons with zero-range interaction will be exploited in Sec.
VII to construct an effective theory.

The imaginary part of K for the ground state goes
asymptotically to L /4wA (or 1/2A in natural units). The
dashed line in Fig. 2(b) corresponds to the Bethe momen-
tum a of the free nucleon. The clusters (nucleons) are
then more tightly bound in the deuteron than when they
are isolated. As L — oo, the nucleons look more like the
free nucleon. For the excited states (m > 1), the value of
Im(K) lies in between the dashed and solid lines in Fig.
2(b). It becomes closer to the solution for the free nu-
cleon as m increases. All excited states then have clusters
with a different internal structure, which is less distorted
from the structure of the free nucleon, the higher the
quantum number m.

The energy in the c.m. frame is obtained from (6),
which as a function of K becomes

4A

2
I [(ReK )*—(ImK )?] . (22)

E,=B

m

In Fig. 3 we have plotted the energy in the first four lev-
els for some range of the parameter L /A. For a fixed
value of the nucleon’s size, A, as L goes to infinity, the en-

- o3 N
W o W

E (in units of B)
w o

-5 i 1 i 1
0 5 10 15
L/A

FIG. 3. Energy spectrum of the deuteron system as a func-
tion of the dimensionless parameter L /A. The first four states
are shown (m =1,2,3,4 from the bottom) and the energy is
given in units of B (=42 MeV).
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ergy goes asymptotically to — B, which in our model cor-
responds to the internal binding energy of the two nu-
cleons. In a real deuteron the nuclear energy is small
compared to the internal binding energy of the nucleons;
this is true in our model only for L >5A, where the
ground-state energy approaches —B. Therefore, on the
basis of deuteron energetics, we shall fix the value of the
parameter L /A =S5 for the ground state.

If the size of the nucleon, A, is taken to be of the order
of 1 F, we may estimate the value of B. First, note that
the mass of the quark is m =1/(2BA?), while the binding
energy of the quarks in the nucleon is —B /2. With a nu-
cleon mass of 940 MeV, B must be of the order of 42
MeV.

V. MOMENTUM REPRESENTATION

For the calculation of structure functions, it is useful to
work directly in a momentum representation. Indeed,
the wave function (3) in position space is cumbersome for
this purpose, because of the changes of form at each of
the boundaries x; =x;. Fortunately, the momentum rep-
resentation of the Bethe ansatz wave functions has been
studied by Sasaki and Kebukawa, in a series of papers.®’
By starting with the case of only two particles, which can
be solved easily with the techniques of one-particle quan-
tum mechanics, they then inferred what the general solu-
tion for any N should be. They also used second quanti-
zation, which is a more convenient approach to systems
of identical particles, and which we adopt here.

For the case of fermions with two colors, the Hamll-
tonian (1) becomes

217?»
BE =P | (afa,+b,b,) .
281
- 2 p+qbr—gbra, (23)
pg,r

where the operators a; and bg create quarks of colors a
and b, respectively, and with dimensionless integer
momentum p. Their Hermitian conjugates annihilate the
same quarks.

The states of two fermions coupled into a color singlet

have the general form

P17 Py

T T
5 b, |0> (24)

)= > 8(py+p,
120 %)

—Q)¢

with an even wave function ¢(p). The wave function that
makes these states eigenstates of the Hamiltonian is

¢(p)= pzf PRI
where k is the Bethe momentum defined by (15), and S is
a normalization constant.

The state of one cluster of fermions is obtained from
(24) and (25), when the quantum number [ of (15) is made
equal to zero, and the momentum k then becomes purely
imaginary (k =ia). Thus the wave function for a cluster

(25)
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of quarks is

B
p2 + a2
The state (24) with the wave function (26) gives the state
of the nucleon. The value of a is shown in Fig. 2(b) as the
J

o(p)= (26)

0)y=—L

P1sP:P3iPy

where the wave function is

—1)"6(py +py+p3+ps)

V2

1973

dashed line.

To obtain the states of two clusters, we look at the
eigenstates of four fermions coupled into a color singlet.
Their form is given in Ref. 7; however, they can be re-
duced to the simpler form (details are given in Refs. 8 and
9)

S Qp—Q/4...,py—Q/40) ala) b [0}, 27)

k, +k,
i p)

(
Qpy,p2sP3:P4)=B 3,

vES,

(pl _kv1 )(p4—kv4)

the number 9§, is just a reminder that if for a given set of
numbers kj, the sum kvl-i-kv2 becomes zero, then the

second term inside the large parentheses should be ig-
nored.

VI. STRUCTURE FUNCTIONS

In this section we undertake the main purpose of this
investigation, which is the calculation of structure func-
tions of our model nuclear system, with the goal of look-
ing for effects of the quark substructure of the nucleons.
The structure functions considered are ground-state ma-
trix elements of various one- or two-body operators,
which are, in principle, measured in the scattering of a
weakly scattered projectile, e.g., an electron. They are
enumerated below.

The main task is the calculation of the structure func-
tions for the model ground state. As we mentioned
above, this is impractical to do in configuration space,
even though the Bethe ansatz forms are known explicitly
for the model, because of the changes of form at each of
the boundaries x; =x;. The momentum representation is
more directly useful; we shall use the ground-state func-
tion in the form given in (28), which is a simple rational
function. The structure functions then reduce to a set of
multiple infinite sums over momenta, with constraints for
momentum conservation. Although this can be done in
principle by direct numerical calculation, it is difficult to
obtain good numerical accuracy in reasonable times.
Further, it would be quite difficult to extend the calcula-
tion to a larger system. Therefore, we have developed a
set of finite algorithms to evaluate all the infinite sums
analytically.
~ The algorithms amount to partial fraction expansions
that lead t&'sums that can be evaluated in a simpler form.
However, rather than doing a partial fraction expansion
first, which generates many terms, and then evaluating
the sums, we evaluate sums first, leaving the results in
terms of certain functions. We do not attempt to write
each function in an algebraic form, but we give a set of
rules to evaluate its exact value at any point within its

pZ_kv2

-3, ; (28)
p1+P2—kvl_kv2

domain. We shall simply present the results of these cal-
culations here. The details of the method are explained
elsewhere.®°

Two general features of the structure functions for this
model system should be pointed out. First, because of
the periodic boundary conditions in length L, the mo-
menta and momentum transfer are discrete. This is an
unrealistic feature of our model. There is a compensa-
tion, which is that the model is translationally invariant,
a nontrivial matter for a bound system. This is a distinct
advantage for the calculation of scattering properties.
The second property is the power-law behavior of the
structure functions for large momentum or momentum
transfer. The leading (lowest) powers are easily identified
from log plots at large q.

The structure functions studied here are the following.

(1) Quark momentum distribution N (p) given by the
probability of finding a quark with momentum p inside
the nucleus. With the quark state of the nucleus—(27)
and (28) —normalized to 1, the quark momentum distri-
bution is calculated as the expectation value

N(p)=(Qlafa, +b/b,10) . (29)

The result for the deuteron is a monotically decreasing
function, which decays asymptotically as p ~* (Fig. 4).

(2) Elastic form factor F(q) defined as the Fourier
transform of the density of quarks in the nucleus. It is re-
lated to the elastic-scattering cross section of elementary
projectiles such as the electron. In second quantization
and momentum representation, we have

Fl@=1Q,13(a]ja,+b], ,b,)lQ) (30)
> ,

where the states |Q) and |, ) have the same internal
structure given by m, but the total momentum of |Q) is
Q, while that of [, ) is Q +4.

The result is shown as the circles in Fig. 5. At large
momentum transfer g, the elastic form factor decays as
g ~%. Beyond a certain value of g, the result becomes neg-
ative (the points where F is negative are indicated by a
double circle in Fig. 5). Because of the discrete nature of
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FIG. 4. Quark-momentum distribution in the quark model
and cluster and impulse approximations, for L /A=5.

the momentum transfer, our model does not give any in-
formation between ¢ =0 and g =5/A.

(3) Quark correlation function, which is the Fourier
transform of the probability of finding two quarks at a
given distance from each other. In order to discuss the
results in a more convenient way, it will be separated into

(¢)
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FIG. 5. Elastic form factor for L /A=5. The double circles
represent the points where the quark model result becomes neg-
ative.

two functions:
D q):

Clq

same color, C(q), and different color,

III

)=HQl3(e), a]a,a,+b], 6] b,
pr

b)),

31)
%<Ql2a,,+q a,|Q) . (32)

The different-color correlation function has a mini-
mum at ¢ =27A/L and a maximum at g=47A/L. Asa
consequence, the distance between two quarks with
different color is most likely close to L /2. Beyond the
maximum, D(q) decreases monotonically as g ~2 (see Fig.
6).

The same-color correlation function C(q) is shown in
Fig. 7. The probability that two quarks of the same color
be at the same point is given by the sum (Fourier series
for zero separation)

PO)=1LScClg) . (33)
L p ‘

But according to the exclusion principle, this quantity
must vanish and so must the sum of C(q):

3C(g)=0. (34)
q

The quark correlation function can be measured in-
directly in inelastic-scattering experiments; its separate
terms could only be measured with probes sensitive to
color, which is not the case in any known process.

(4) The Coulomb sum rule 72(q) is defined as the sum
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FIG. 6. Different-color correlation function for L /A=5.
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FIG. 7. Same-color correlation function for L /A=5. The
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where C is negative.

of the response function over all possible energy transfers
o, excluding the elastic channel. In terms of the opera-
tors a and b, it becomes

R(g)= 2|<f|z al i a,+b), b)) (35)

VEall

This function can be written in terms of the correlation
functions and the elastic form factor. For the deuteron,
J(q) becomes

R(g)=1L[1+C(qg)+2D(g)]—|F(g)* . (36)

The result is shown in Fig. 8. The Coulomb sum rule
7i(q) saturates at about 5/A, where it approaches the
value 1 (since there are four quarks).

The expectation value of the kinetic energy can be ob-
tained from the momentum distribution. And the expec-
tation value of the potential energy is determined by the
different-color correlation function. Since the eigenvalue
of the Hamiltonian is a function of the Bethe momentum
K —see (22)—we have the following sum rule:

EpzN(p)—

p

L Sp)=(RekP—(mKk 2, (7)
2rA p

which is $atisfied by the functions N and D. This sum
rule can be used to verify the accuracy of numerical cal-
culations, as well as providing a consistency condition for
approximation methods.

The functions considered in this section contain infor-
mation on both nuclear and quark degrees of freedom.
The part that corresponds to nuclear degrees of freedom
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FIG. 8. Coulomb sum rule for L /A=5.

~

will be estimated in later sections by introducing approxi-
mation schemes based upon an effective theory in terms
of nucleon degrees of freedom. The results from the
present section will be treated as the “experimental” data
to which the approximate results will be compared.

VII. EFFECTIVE THEORY

We now turn to the construction of an effective theory
of the nucleus, in which it is regarded as a system of ele-
mentary nucleons. The quark observables of the nucleus
will be calculated in Sec. VIII in the traditional way: by
folding the structure of the nucleus, in the effective
theory, with the quark structure of the isolated nucleon
(impulse approximation). The effective theory will also
be used in Sec. IX to develop a cluster approximation
which introduces the effects of quark exchange among
nucleons.

Consider a system of bosons, which will represent the
nucleons in our model, moving inside the one-
dimensional finite length L, with attractive delta-function
interaction of strength g (g <0). The Hamiltonian is then
the second-quantized momentum representation of (1) in
the case of bosons

2
~ _ B 27Ap +
a== % SR | 44,
s ol 4l oA, A, | ()
Pl’[’zvq

Here 4 J and 4, are the operators that create and annihi-
late a boson with dimensionless integer momentum p (we
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are using the same units introduced in previous sections).
The factor of 1 has been included because the mass of the
nucleons in the effective theory is twice the mass of the
quark, m, and the constant BA? is inversely proportional
to the mass.

The two-boson eigenstates of this Hamiltonian are
determined by a Bethe momentum k as given by (15);
however, since the mass of the nucleon is 2m, the argu-
ment in the function f in (15) must be replaced by k /2.
Furthermore, according to (21), the total momentum of
the model deuteron, Q has to be an even number, which
is only possible if / is even. Then we restrict the quantum
number / to only even values: [=2m; and the Bethe
momentum of the two nucleon system is given by

k,=m+f(k,/2), m=123,... . (39)

We do not consider the case m =0, because it would cor-
respond to a space-symmetric bound state of four quarks,
which in the two-color case is a violation of Pauli ex-
clusion. The momentum k, gives an excellent approxi-
mation to 2 Re(K), where K is the Bethe momentum (20)
for the deuteron, in the quark model. In fact, in Fig. 2(a),
'k, /2 could not be distinguished from Re(K). The total
energy of the two-boson eigenstate is given by (6) with
N =2, but divided by 2, because of the factor % in the
Hamiltonian (38); therefore, the energy of the deuteron in
the effective theory is BkX(2wA /L ). This energy gives a
good approximation to the positive term in (22); the nega-
tive term will be accounted by the binding energy of the
quarks inside the nucleons, as will be explained below.

The restriction to only even total momentum Q is due
to the fact that the nucleons are not truly elementary, but
clusters of two quarks; the periodic boundary conditions
imply that a system of two particles moving together in a
cluster must have an even total momentum. Therefore,
the allowed momenta for each nucleon in the effective
‘theory are only the even numbers, and the effective eigen-
states of the deuteron are

0,)=—= 3 8(2p,+2p,~ Q)
P1:Py

Xw,(p1=py) A}y, 43,100, (40)

where the wave function is

B.
= (41)
P e

The internal structure of each nucleon is considered as
independent of the presence of other nucleons. In Sec. IV
we found the quark state of a nucleon by solving the
quark Hamiltonian for a system of two quarks clustered
in a color singlet. Each nucleon has a binding energy
E,=—2B(27X/L)*a* [Eq. (17)]. Since a gives a good
approximation to the imaginary part of K, the binding
energy of the nucleons (2E,) corresponds to the negative
term in the energy of the deuteron (22).

Equations (18) and (19), which were coupled, have thus
been separated into two independent equations that
determine the real and imaginary parts of K [(39) and
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(15), with [ =0]. Even though we started with a system
of bosons with attractive interaction, by removing a sub-
set of the energy levels, we have ended up with the spec-
trum of a system with a repulsive effective interaction.
To see why the spectrum corresponds to a repulsive po-
tential, let us note that in (39) the solution for a given m
is in the interval (m —1,m). Thus the mth energy level is
within the interval

2 2

<E, <B

2
2mA

L

B 27Am

(42)

But a system of two noninteracting bosons has energy
levels

E\Y=B m=12,...), (43)

Am—1) | (
L

which are lower than E,, for any m=1,2,... . This
means that the effective interaction among hadrons is
repulsive. The physical origin of the repulsive interaction
is the fermionic nature of the constituents of the nucleon,
which prevents overlapping of the two hadrons thereby
excluding the state with m =0.

VIII. NUCLEON IMPULSE APPROXIMATION

In the impulse approximation, the internal structure of
the nucleons is assumed to be independent of the pres-
ence of other nucleons and equal to the structure of an
isolated nucleon. Quark dynamics is needed only to
study the system of quarks inside one nucleon. The state
of the isolated nucleon, given by (24) and (25), is used to
calculate its intrinsic properties: elastic form factor f,
quark-momentum distribution n, and quark-quark corre-
lation function d. Independently of this calculation, the
nuclear state in the effective theory gives the nuclear
properties of the nucleus in terms of nucleonic degrees of
freedom: nucleon momentum distribution n,, elastic
form factor f,, and nucleon-nucleon correlation function
¢,. The structure functions of the nucleus in terms of
quark degrees of freedom are then calculated as a folding
of the two independent sets of functions.

In the model we are using, the momentum p of the iso-
lated nucleon is continuous; namely, p can be any real
number. However, in the effective theory the nucleon
momentum can only take discrete values. Because of this
discrepancy, the structure functions cannot be calculated
as a simple folding as usually done in the impulse approx-
imation. To avoid this difficulty, we introduce a nucleon
impulse approximation in which we assume that the inter-
nal structure of the nucleons is the same as that of a sin-
gle nucleon, inside a length L equal to the nuclear length.
The structure functions of such nucleon are then discrete
in momentum, and the structure functions of the nucleus
can be calculated by simple folding as in the impulse ap-
proximation.

To illustrate what we mean by folding of the structure
functions, we will derive the same-color correlation func-
tion of the deuteron. Two quarks of the same color in-
side the deuteron can only come from different nucleons.
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Suppose that the two nucleons are at the positions R,
and R,, and the positions of the two quarks inside their
corresponding nucleons are y and z. The probability that
the distance between the two quarks be x is then given by
the following convolution integral:

Pc(x)=ffdy dz p(ylp(z)p,(x +y—2z), (44)

where p(y) is the quark density of the nucleon, and
p.(R,—R ) is the probability of finding the two nucleons
at a distance R, —R; from each other. The same-color
correlation function C(gq) is the Fourier transform of P,.
In our case the functions p and p, have period L; the
same-color correlation function of the deuteron is then

Cialg)=r*q)c.(q), (45)

where f(q) is the elastic form factor of the nucleon and
¢, is the nucleon-nucleon correlation function, i.e., the
Fourier transform of p,.

The folding can be done in a similar way for the
quark-momentum distribution N(q), the elastic form fac-
tor F(q), and the different-color correlation function
D (q); the results are

Niu(p)=3>n(p—q/2)n,lq), (46)
q

Fia(@=f(q)f.(q) , 47)

DiA(@)=1[d(g@)+fHq)c.(q)] . (48)

These functions can all be calculated with some simple
algebra.

The Coulomb sum rule is calculated by assuming that
the internal structure of the nucleon does not change in
proximity to other nucleons, and thus the intrinsic form
factor of the nucleon can be factored out of the nuclea
inelastic form factor, leading to ’

1+c,(q)
—2~i — X 49)

Rialg)=fq) q)

The results obtained using the impulse approximation
are shown in Figs. 4—8. The momentum distribution and
different-color correlation function reproduce very well
the exact result. This is not surprising, since these two
functions are the ones that determine the energy accord-
ing to the sum rule (37), and the effective theory was con-
structed in good agreement with the energy spectrum.
Therefore, the forms of the functions N (p) and D (q) are
constrained by the total energy, through the sum rule
(37), for both the quark and impulse models.

By contrast, the impulse approximation Cy,(q) to the
same-color correlation function is not so close to the
quark model function C(q), as is seen in Fig. 7. Part of
this disagreement comes from the violation of the Pauli
exclusion ptinciple for quarks in the impluse approxima-
tion, so that Cy,(q) does not satisfy the sum rule (34),
which is satisfied by the full quark model. Moreover, the
domain of C;, includes only every other term (even in-
teger momenta) in the domain of C(gq) frdm the quark
model (Fig. 7) and is always positive, thus clearly violat-
ing (34).
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FIG. 9. Quark-momentum distribution in the quark model
and cluster and impulse approximations, for L /A=2.

The impulse approximation also fails to predict the
correct elastic form factor. The asymptotic behavior of
the elastic form factor obtained is ¢ ~* instead of ¢ ~° as
in the quark model, presumably because of the factored

form of the former approximation, given by (47). Simi-
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larly, the factoring of the (squared) nucleon form factor
in the approximate Coulomb sum-rule function (49) leads
to a disagreement with the quark model. Since f(g)—0
asymptotically, 7215(q)—0, while (g)— 1, as shown in
Fig. 8.

These results are qualitatively similar even if we
change our choice of L /A=5 to values a little higher or
lower. For instance, we show the momentum distribu-
tion (Fig. 9) and the elastic form factor (Fig. 10) for the
case where the ratio of nucleus to nucleon size is L /A=2.
The momentum distribution is still well reproduced by
the impulse approximation, while the elastic form factor
at large momentum transfer shows the same effect found
in the case L /A=5.

IX. CLUSTER APPROXIMATION

One of the obvious omissions of the nuclear impulse
approximation is the violation of the Pauli exclusion
principle for quarks. A common method of including
this effect is by explicit introduction of the quark vari-
ables for each nucleon, with antisymmetry for the
quarks.!® This quark exchange correction can be includ-
ed in our effective theory if the elementary boson opera-
tors A; in the deuteron state (40) are replaced by the
quasiboson operators that create a nucleon in terms of
quarks. The operator that creates a nucleon with total
momentum p out of two quarks, is given by (24) with the
wave function (26):

pP1—P

> albl . (50)

Py7Py

A)=3 8(p,+p,—plo
PPy ‘

Replacing the bosonic operators by Z; in (40) leads to
the four-quark state

— tof t.7 .
|QCA>_% > QCA(’l”z”'3”‘4)brlarzarsbu10>,

(ri)i=1,2,3,4
(51)

the sums over the momenta r; run over all integral values
of (r;+e€),i.e,

r=—€tl—e, ..., (52)

where € is either O or 1, depending on whether the quan-
tum number m is even or odd. Here the wave function is

Qealri,rar3,74)

=V28(r,+ry+ry+r,)

R,—R,
2

r—nr
2

r3—}‘4
2

X , (53)

e

where R; and R, are the momenta of the two clusters:
R,=r,+ry,, R,=ry+r,. The state |Qc,) is not an
eigenstate of the Hamiltonian (23), and it does not satisfy
the sum rule (37).

The computation of structure functions can be done
directly using the expressions given in Sec. VI. The re-
sults can all be written as a sum of direct plus exchange
terms:
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FcA(q)=Fd(q)+Fe(q) ’ (54a)
Cealg)=Cylg)+C,(q), (54b)
Dcplg)=Dy(g)+D,(q) , (54c¢)
Nca(r)=Ny(r)+N,(r) . (54d)

The results are products of two wave functions Qc,,
with certain infinite sums over momenta. The direct
terms can be evaluated with some simple algebra, and
they all lead to the same results as those of the nucleon
impulse approximation, obtained in Sec. VIIL. In the ex-
change terms, the infinite sums over momenta have been
computed analytically using the same finite algorithm
mentioned in Sec. VI.%°

The norm of the state [Q¢, ) then takes the form

(QcalQca)=1+E , (55)

where the direct term gives the normalization 1; the con-
stant E is given by the exchange term and is not equal to
Zero.

The exchange corrections are in general not very
significant, except in the case of the same-color correla-
tion function: With the addition of the exchange term,
Cca(q) now sums to zero, as required by Pauli exclusion
(34) (see Fig. 7). However, the function obtained is not a
good approximation to the exact result. Unlike the case
for the impulse function C;,, Cc, has the correct
domain, that is, both even and odd values of the (integer)
momentum. However, since the impluse contribution is
to even values only, while the exchange terms contribute
to both, the result is that C, fluctuates from point to
point.

The failure of the impulse approximation to reproduce
the exact elastic form factor is not solved by the introduc-
tion of quark exchange in the cluster approximation (Fig.
5). Apparently, Pauli exchange is not a significant
correction to the factored form of the impulse approxi-
mation; other quark correlations are more important.

The Coulomb sum rule in the cluster approximation is
very close to the result from the quark model and gives
the correct asymptotic behavior since the cluster approxi-
mation state of the deuteron is given in terms of quark
degrees of freedom. Figure 11(a) shows the function
S(q), defined as
27 (q)
fig)
where f(q) is the elastic form factor of the nucleon. In
the impulse approximation, this function goes asymptoti-
cally to unity. However, if one defines the same function
in the quark model or cluster approximations [Fig. 11(b)],
which are both quark theories, the result would be a
function that increases without limit, as pointed out by
Horowitz.'*

The interest in the function S(g) is that it “removes”
the structure of the nucleon (in the impulse approxima-
tion, only) from the Coulomb sum rule, therefore presum-
ably leaving only the nuclear correlation information.
However, this is not appropriate when the full Coulomb
sum-rule function (q) is used in the numerator. What

(q) , (56)



is done in actual analysis of (e,e’) scattering (e.g., Ref. 15)
is to use a finite-energy cutoff in obtaining the sum-rule
function from the measured response function, with a
theoretical correction for higher nuclear (but not nu-
cleon) excitations. This allows comparison of data with
theoretical nuclear predictions of S(g).
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FIG. 11. Nuclear Coulomb sum rule S(g) for L /A=5. Part
(a) shows the results from the impulse approximation, and (b) is
obtained from the quark model and cluster approximation.
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X. SUMMARY AND CONCLUSIONS

We have introduced a dynamical model of the nucleus
to examine how the internal structure of nucleons might
be modified inside the nucleus. Structure functions for
elastic and inelastic scattering are used to look for such
effects. These functions are calculated using the ground
state of our model nucleus in terms of quarks and the
contribution from nucleon degrees of freedom is separat-
ed by use of an impulse approximation. Once the part
due to nucleon degrees of freedom is separated, the
remaining part is assigned to the modification of the
structure of nucleons.

The model used is a system of quarks with an attrac-
tive zero-range interaction. It has the advantage that the
one-dimensional version constitutes an integrable system
and all eigenstates can be obtained from the Bethe ansatz.
The complete spectrum includes bound states in which
groups of quarks cluster together. Each cluster
represents a nucleon in the model. The nuclear ground
state resembles a deuteron, with two clusters of two
quarks each. There are also excited states with only one
cluster and states with no clusters at all. Thus such a sys-
tem is complex enough to allow a study of both nucleon
(cluster) and quark degrees of freedom in the deuteron.

The complete set of eigenstates is well known and is
completely defined by a set of Bethe momenta. We have
solved the equations that define the Bethe momenta in
the case of two clusters with a finite length L. The ratio
of L to A can be varied. For the deuteron our estimate of
this ratio is 5, although we have also studied a range of
values of L /A. We show some results for L /A=2 (Figs.
9 and 10) which are qualitatively similar to the results for
L /A=35, although the nucleus overlap is much larger in
the former case.

Since the eigenstates are all known, the kind of observ-
ables measured in scattering experiments can be calculat-
ed directly, in principle. The problem was made tract-
able using the representation of wave functions proposed
by Sasaki and Kebukawa® in momentum space and in
second quantization. We have reduced the states given
by Kebukawa’ to a simpler form, and we have developed
a finite algorithm to calculate structure functions of the
deuteron target in an analytic form. The results have
been reported here, and details of the calculations are
given elsewhere.®’

The structure functions of the model deuteron contain
information on both nuclear and quark degrees of free-
dom. The impulse approximation, used to identify the
contribution from nuclear degrees of freedom, leads to
structure functions which are a folding of the internal
quark structure of the isolated nucleon with the structure
of the nucleus in an effective theory where nucleons are
treated as elementary particles. The effective theory was
extracted from the model by constructing a nucleon
Hamiltonian with an energy spectrum very close to that
of the quark Hamiltonian.

It is found that the quark-momentum distribution and
the different-color correlation function can both be repro-
duced well by the impulse approximation. Thus these
two observables are not very sensitive to the modification
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of nucleons by the nuclear medium. This result, we be-
lieve, follows from the sum rule (37): The momentum
distribution determines the kinetic energy, while the
different-color correlation function gives the potential en-
ergy. Since-the effective theory was constructed in excel-
lent agreement with the energy spectrum, the sum rule
constrains the forms of both functions. By contrast, the
Coulomb sum rule and the elastic form factor at large
momentum transfer have been found to be the most sensi-
tive to quark effects.

To determine whether the modification of the structure
of nucleons is due mainly to quark Pauli exchange, we
further developed a cluster approximation to the model,
in which the operators that create elementary nucleons in
the states of the effective theory are replaced by operators
that create clusters of quarks. The resulting state has the
correct antisymmetry under exchange of any two quarks
in the nucleus. Contrary to what was expected, the re-
sults of the impulse approximation appear to be better
than those of the cluster approximation. We attribute
this striking result to the fact that the cluster approxima-
tion attempts to improve on the effective theory, but in
the process, no longer corresponds to a model with the
same spectrum as in the full quark model. For example,
the sum rule (37) does not hold for the cluster approxima-
tion. Apparently, the factoring approximation of the im-
pulse approximation is not so serious, at least for N(q)
and D (g), and inclusion of Pauli exchange is not an im-
provement: Other correlations are more important.

It has been suggested by different authors that the nu-
clear environment modifies some of the physical proper-
ties of the nucleon such as its mass or radius. It is clear
that a simple swelling of the nucleon inside the nuclear
medium does not account for this effect in our model. If
we assumed that the nucleon size A were larger inside the
nucleus than in free space, we would obtain a form factor
closer to the experimental data. However, even if A is in-
_creased, the asymptotic behavior of F(g) remains g ~*.
The experimental data decay asymptotically two orders
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of magnitude faster than that [F(g)~q ¢]. In order to
reproduce the exact behavior, we would have to assume a
different functional shape for the form factor of the nu-
cleon inside the nucleus. The effect of the periodic
boundary conditions, which represents the effect of bind-
ing on our nucleons, is small.

It is not clear how dependent our results are on the
specific details of our model. For example, using a some-
what different quark model, Kumano and Moniz!!' find
that their impulse approximation gives a very close fit to
the elastic form factor, but not to the quark-momentum
distribution. It is possible that some of this difference is
due to the difference of the spectrum of their effective
theory from that of the quark model; i.e., their model
does not obey a sum rule like (37). On the other hand,
our Coulomb sum-rule results are very similar to those
given by Horowitz!'* for a model very similar to that of
Kumano and Moniz.

Several extensions of the methods of this paper are pos-
sible and are under investigation. First, it would be in-
teresting to study the full response function R(q,w). In
the present model, this can be obtained by calculating
directly the inelastic form factors, since there are no con-
tinuum states. The three-color version of our deuteron
model seems feasible, but the algebra for six quarks is
more complicated. Last, it would be interesting to extend
these considerations to a denser nuclear system with
many nucleons.
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