EIC0014 — FÍSICA II — 2º ANO, 1º SEMESTRE

14 de dezembro de 2015

FEUP	FACULDADE DE ENGENHAK
	UNIVERSIDADE DO PORTO

TA T			

Nome:			

Duração 90 minutos. Respostas certas, 1 ponto, erradas, -0.25. Pode consultar unicamente um formulário de uma folha A4 (frente e verso). Pode usar calculadora ou PC, mas unicamente para realizar cálculos e não para consultar apontamentos ou comunicar com outros!

- 1. Se a esfera E_1 com equação $x^2 + y^2 + z^2 = 9$ é superfície equipotencial com potencial V_1 e a esfera E_2 com equação $x^2 + y^2 + z^2 = 16$ é superfície equipotencial com potencial V_2 (onde $V_1 > V_2$), e entre as duas esferas não existe carga, qual das seguintes afirmações é sempre verdadeira?
 - (A) A carga total dentro da esfera E_1 é negativa.
 - (**B**) A esfera E_1 é uma esfera condutora.
 - (C) Existe uma carga pontual na origem.
 - (**D**) A carga total dentro da esfera E_1 é positiva.
 - (E) A carga total dentro da esfera E_1 é nula.

Resposta:	
-----------	--

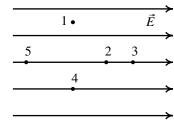
- **2.** O campo magnético numa região do espaço é $2\hat{i} + 3\hat{j} + 5\hat{k}$ (unidades SI). Determine o módulo do binário magnético numa espira triangular, com vértices na origem e nos pontos (3.2, 0, 0) e (0, 4.8, 0) (unidades SI), percorrida por uma corrente de 1 A.
 - (A) 41.4 N·m
- (C) 34.3 N·m
- (E) 49.2 N·m

- (**B**) 27.7 N·m
- (**D**) 38.4 N·m

Resposta:

- 3. Uma bobina com 200 espiras quadradas, com arestas de 6 cm, encontra-se numa região onde existe campo magnético uniforme, com módulo de 0.15 T, perpendicular ao plano das espiras. Calcule o fluxo magnético através da bobina.
 - (A) $10.8 \text{ mT} \cdot \text{m}^2$
- (C) $0.54 \text{ mT} \cdot \text{m}^2$
- **(E)** $54.0 \, \text{mT} \cdot \text{m}^2$

- **(B)** $18.0 \text{ mT} \cdot \text{m}^2$
- **(D)** $108.0 \text{ mT} \cdot \text{m}^2$


Resposta:

- **4.** Duas superfícies condutoras esféricas e concêntricas têm raios de 5 cm e 7 cm. A superfície menor tem uma carga total de 6 nC e a carga total na superfície maior é 3 nC. Calcule o potencial num ponto a 6 cm do centro das esferas, arbitrando potencial nulo no infinito.
 - (A) 900 V
- (C) 1350 V
- (E) 1286 V

- **(B)** 450 V
- (**D**) 3600 V

Resposta:

5. Em qual dos pontos no diagrama o potencial é maior?

- (A) 5
- **(C)** 2
- **(E)** 1

- **(B)** 3
- **(D)** 4

Resposta:

Resposta: 7. Se R, L e C representam a resistência, a indutância e a capacidade

num circuito, qual das seguintes expressões tem unidades de

6. Se o tempo for dado em ms e a indutância em μH , em que uni-

dades deverão ser dadas as resistências para manter as unidades

(A) L/C

consistentes?

(A) $\mu\Omega$

 $(\mathbf{B}) k\Omega$

(C) R/L

(C) $m\Omega$

 $(\mathbf{D}) \Omega$

(E) LC

(E) $M\Omega$

- (B) L/R
- **(D)** C/R

Resposta:

resistência ao quadrado?

- 8. Um feixe de eletrões atravessa uma região onde existem campos elétrico e magnético uniformes e perpendiculares entre si. O módulo do campo elétrico é 3.4×10^4 V/m e o do campo magnético 20 G. A velocidade dos eletrões tem o valor e direção necessários para que o feixe não seja desviado pelos campos. Calcule o valor aproximado do módulo da velocidade dos eletrões.
 - (A) 1.7×10^7 m/s
- **(D)** 6.8×10^5 m/s
- **(B)** 1.7×10^3 m/s
- **(E)** 0.52 m/s
- (C) 68 m/s

Resposta:

- 9. Uma bobina com indutância de 4.2 mH é ligada a uma fonte ideal de 1.5 V. Após 4.5 segundos, a corrente na bobina é igual a 2.8 mA. Calcule a força eletromotriz média induzida na bobina durante esse intervalo.
 - (A) $2.61 \,\mu\text{V}$
- (C) 0.62 mV
- (E) 0.33 V

(E) $0.0032 e^{-2t}$

- (**B**) 1.31 μV
- **(D)** 0.75 V

Resposta:

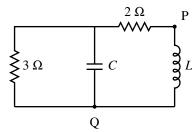
10. A expressão da voltagem da fonte no circuito do diagrama é $V_e = 400 \,\mathrm{e}^{-2\,t}$ (unidades SI) em t > 0 e 0 em $t \le 0$. O condensador encontrava-se descarregado em t = 0. Determine a expressão da corrente no circuito em t > 0 (unidades SI).

- (**A**) $0.0032 e^{2t}$ **(B)** $0.004 \,\mathrm{e}^{-2\,t}$
- (C) $0.0016 \,\mathrm{e}^{-2\,t}$
- Resposta:
- **(D)** $0.0016 e^{2t}$

11.	Uma carga pontua	l que se encontra no	ponto $(x, y, z) = (4, 5, 4, 5)$	3) 16.	Quando o sinal de	entrada num circuito	é $2e^{-2t}$, o sinal de saída	a
	(distâncias em cr	n) produz um pote	ncial de 6 kV no pon	ito		e^{-2t} . Encontre a fun	nção de transferência do)
	(x, y, z) = (3, 7, 4)	(arbitrando potenc	al nulo no infinito). C	al-	circuito.			
	cule o valor da car	rga em unidades de 1	ıC.		5s	5	3	
	(A) 16.33	(C) 14.91	(E) 6.67		$(\mathbf{A}) \ \frac{5 s}{2 s - 1}$	(C) $\frac{2s-1}{2}$	(E) $\frac{3}{s-1}$	
	(B) 40.0	(D) 2.72			(B) $\frac{s}{2s-1}$	(D) $\frac{3s}{s-1}$		
	Resposta:				Resposta:			

12. O campo magnético numa região do espaço é dado pela expressão

$$\vec{B} = a x y \hat{\imath} + y^2 \hat{\jmath} + y z \hat{k}$$


onde a é uma constante. Calcule o valor de a.

- **(A)** 3
- **(C)** -1

- **(B)** 1
- **(D)** 2

Resposta:

13. Determine a expressão da impedância equivalente entre os pontos P e Q no diagrama, em unidades SI, sabendo que C = 5 F e L = 1 H.

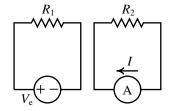
14. O campo magnético produzido por um fio retilíneo com corrente I é dado pela expressão

$$-\frac{2 k_m I x}{z^2 + x^2} \hat{k} + \frac{2 k_m I z}{z^2 + x^2} \hat{i}$$

Calcule o campo elétrico induzido, num referencial que se desloca com velocidade $v \hat{i}$ em relação ao fio.

- (A) $\frac{2 k_m I v x}{z^2 + x^2} \hat{j}$ (C) $\frac{2 k_m I v}{z^2 + x^2} \hat{j}$ (E) $\frac{2 k_m I v z}{z^2 + x^2} \hat{j}$ (B) $-\frac{2 k_m I v z}{z^2 + x^2} \hat{j}$ (D) $-\frac{2 k_m I v x}{z^2 + x^2} \hat{j}$

Resposta:


- 15. Qual das seguintes afirmações sobre o campo magnético é verda-
 - (A) É um campo conservativo.
 - (B) Os seus pontos de equilíbrio podem ser centros.
 - (C) Pode ter pontos de equilíbrio atrativos.
 - (D) As suas linhas de campo são sempre curvas; nunca podem ser retas.
 - (E) Os seus pontos de equilíbrio podem ser focos.

- 17. A expressão do campo elétrico numa região do espaço é $\vec{E} = 6 x^2 \hat{i}$ (unidades SI). Calcule a diferenca de potencial V(2) - V(1) entre os pontos x = 2 m e x = 1 m, sobre o eixo dos x.
 - (**A**) -24 V
- **(C)** -6 V
- **(E)** -18 V

- **(B)** -12 V
- **(D)** -14 V

Resposta:

18. A expressão da voltagem $V_{\rm e}$ da fonte no circuito do lado esquerdo da figura, em função do tempo t, é $50 t^3$, se $t \le 5$, e $50 e^{-2t}$, se t > 5. Qual das expressões na lista pode ser a corrente obtida no amperímetro A, no circuito do lado direito, medida na direção indicada?

Resposta:

- 19. Um indutor de 3.6 H e uma resistência de $2.0~k\Omega$ ligam-se em série a uma fonte ideal com f.e.m. de 6 V. Calcule a diferença de potencial no indutor no instante final (após a fonte ter estado ligada muito tempo).
 - (**A**) 6 V
- **(C)** 0
- **(E)** 21.6 V

- **(B)** 1.67 V
- **(D)** 3.0 V

Resposta:

- 20. Uma partícula com carga negativa desloca-se no sentido positivo do eixo dos x, numa região onde o campo elétrico é nulo, mas existe campo magnético uniforme, no sentido negativo do eixo dos y. Em que direção e sentido aponta a força magnética sobre a partícula?
 - (A) Sentido positivo do eixo dos z
 - (B) Sentido negativo do eixo dos x
 - (C) Sentido positivo do eixo dos x
 - (**D**) Sentido negativo do eixo dos z
 - (E) Sentido negativo do eixo dos v

Resposta:

Respostas

1. D

6. C

11. A

16. A

2. B

7. A

12. E

17. D

3. D

8. A

13. C

18. D

4. E

9. A

5. A

10. C

14. A

19. C

15. B

20. A