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Abstract

A simple quark model of the nucleus is developed, and a deuteron-like system is studied,
which in this model is a non-relativistic, one-dimensional system of 4 quarks with only two
colors, inside a finite volume. The Hamiltonian is exactly solvable and its eigenstates are of
the Bethe ansatz type. In the ground state the quarks are completely clustered, and each
cluster (nucleon) is formed by two quarks in a color-singlet state. An effective hadron theory
is extracted from the quark model, where the clusters are regarded as elementary particles,
with a repulsive effective interaction. The effective Hamiltonian is also of the Bethe ansatz
type and therefore exactly solvable. The effective theory is used to construct two different
approximation schemes: an impulse approzimation, and a cluster approzimation.

The pﬁpose of this study is to test whether the only role of quark dynamics in the nucleus
is to fix the internal structure of the nucleons. The results of the quark model are considered
as “experimental” data, and the results derived using the approximations are viewed as
“theoretical” predictions. Some dynamical functions related to scattering experiments are
investigated. Analytical expressions are obtained for these observables, using an original
technique, and some selected numerical results are presented.

It is found that the momentum distribution and correlation function for quarks of different
color can be reproduced with the effective hadron theory. The observables that are more
sensitive to quark effects are the elastic form factor and Coulomb sum rule. The major
correction to the approximations based on the effective hadron theory arises from a quark
dynamical effect different from Pauli exclusion corrections: the state of the deuteron cannot
be factored into a part that depends only on cluster coordinates and another part depending

on the internal structure of the clusters. Based on the results of the model, we conclude that

iv
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in a real experiment these two functions of the target (i.e. elastic form factor and Coulomb
sum rule) may be the most sensitive to quark effects, other than those already present in the

nucleon.
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Chapter 1

Introduction

So long as big and small are merely relative concepts, it is no help to explain the
big in terms of the small.

P. A. M. DIRAC, The Principles of Quantum Mechanics.

Dirac’s criticism was directed toward classical mechanics, and was one of his arguments
in favor of a new theory of the small (quantum mechanics), departing from the laws of
motion of the big. Quantum theory describes phenomena which would be unheard of in
classical mechanics. It opened a new way of looking at nature and provided the scientific
community with new and challenging problems. On the other hand, problems which were
successfully solved via classical mechanics became intractable with the new mechanics and
were left as belonging to the realm of the big; which is a concern of classical rather than
quantum mechanics (the motion of projectiles, for example).

The continued effort among some scientists to investigate deeper into smaller levels of
nature, does not derive simply from a search for higher accuracy; it is an attempt to discover
new and stricking effects unlike anything known today !. Such discoveries usually lead also
to the understanding of certain processes in the big domain, which were previously regarded

as anomalous. Even though there is a difference between big and small, a clear borderline

cannot be drawn.

!The search for the submicroscopic is not the only way to discover novel phenomena; however, that does
not undermine its important role in contemporary physics
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The level of physical description that concerns us in this dissertation is quark dynamics.
Wheﬂquantum mechanics was introduced, the entities that it dealt with were partvicles such
as the electron, the photon and the atomic nucleus. A few years later it was found that
the atomic nucleus contains protons and neutrons; these nucleons are bound together by the
strong interaction which overcomes the electromagnetic repulsion of protons. The long range
of the strong interaction was explained by the one-boson-exchange mechanism. V

Nowadays, the standard model of particle physics is constructed from quark, leptons and
other particles; their interactions are described by gauge theories. The theory of strong
interactions of quarks is a non-Abelian gauge theory (QCD) with gluons as gauge bosons.
It has very unique features not present in other interaction theories: color confinement,
asymptotic freedom, etc.

The traditional picture of the nucleus as a system of protons and neutrons interacting
through meson exchange, is very successful in explaining almost all empirical phenomena
known today. This seems to indicate the hadronic nature of the nucleus, under normal con-
ditions, which would make a detailed description in terms of quark-gluon degrees of freedom
a difficult and unnecessary task. Furthermore, no QCD calculations have been made at the
nuclear level of energy and distances, because the theory is highly non-perturbative in that
domain. Under extreme conditions, it has been predicted that deconfinement might take
place and nuclear matter would undergo a phase transition into a quark-gluon piasma 2. In
the domain of the quark-gluon plasma, hadron theories are not applicable and QCD is easier
to solve.

Despite the success of traditional nuclear theory in explaining empirical phenomena under
normal conditions, we still hope to find novel phenomena of quark type and maybe even
traces of it in our current collection of nuclear data. The existence of such effects would
have important consequences due to the very different nature of QCD. Our expectation is
reinforced by some recent experimental discoveries, which some authors see as a signature of
quark effects: the EMC effect [2] and the depletion of the longitudinal response function of

nuclear targets [3].

2 A non-technical review on the subject can be found in reference 1]
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The EMC effect was discovered in 1983 by the European Muon Collaboration group; they
measured the structure function of deep inelastic scattering from iron targets and found it to
be different from that of deuterium. This result was unexpected, because in that domain the
impulse approximation is believed to be valid, which implies that after correcting for nucleon
excess and Fermi motion, all nuclei should have the same structure function as the deuteron.
Several plausible explanations of the EMC effect have been proposed (all of different nature);
in one of them, the effect is explained by assuming that the radius of nucleons is bigger when
they are inside heavier nuclei [4]. The same assumption can also account for the anomaly
observed in the longitudinal response function of quasielastic scattering from calcium targets:
its norm appears to be smaller than expected [5]. The swelling of nucleons is viewed as a
quark effect; quarks are confined to a larger bag in the presence of other nucleons. However,
it has been claimed that other explanations of the EMC effect, which do not involve quark
dynamics, have the same partial success as the swelling of nucleons does (a review is found
in [6]); and even the swelling of nucleons can also be explained with meson theories.

A detailed description of all nuclear phenomena, in terms of quark-gluon degrees of free-
dom, being almost impossible and of doubtful relevance, we resort to the use of simple models
to look for phenomena which cannot be explained in terms of traditional nuclear physics. A
few models have been used to look for quark effects in the nucleus; we will call them hereafter
cluster models. There is another model which provides a more Aco’mplete dynamical descrip-
tion of the nucleus in terms of quarks, known as the flip-flop model[7]. It constitutes a true
quark model in contrast with cluster models. The subject of this dissertation is the study of
a quark model different from the flip-flop model.

In cluster models [8,9,10], the nucleus is viewed as a system of nucleons; each nucleon
is a cluster of quarks. The traditional picture to be tested is described by a nuclear wave
function which is a product of nucleonic and cluster functions; for example, if there were only
two nucleons and each one had only two valence quarks, the wave function would be

T3+ 22 3+ 2q

P(e1, 29, 23,24) = ¢( SR ) x(z1,z2) x(23,24), (1.1)

where (z1,22,23,z4) are the positions of the four quarks, ¢(z,y) is the wave function of two

nucleons, and x(z1,z2) = x(21 — z2) the wave function of the two quarks inside a cluster.
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Even though v is a quark wave function, it does not lead to any new quark effects, other
‘than those already present in the nucleoﬁ; the internal quark structure of each cluster remains
always the same. The only role of quark dynamics in traditional nuclear physics is to fix the
internal properties of the nucleons which have been incorporated through the function yx.
This picture has many implicit assumptions which may fail; the main source of its failure is
expected to be that the wave function ¢ is not completely antisymmetric under the exchange
of any two quarks, as required by the exclusion principle (even if ¢ and x have the correct
symmetries, 1 does not). Quark antisymmetrization of the nuclear wave function introduces
- exchange terms which make the internal structure of clusters no longer invariant. Cluster
models are developed by assuming some wave function of the type of equafion (1.1), which
is then antisymmetrized under exchange of quarks.

A more detailed description of quark dynamics inside the nucleus is provided by a quark
model®. A quark Hamiltonian is constructed, which preserves some general features of QCD.
The quark Hamiltonian is then solved, and its eigenstates are used to calculate dynamic
properties of the nucleus. A hadron theory is also extracted, by deriving an effective nucleon-
nucleon potential from the quark model. The eigenstates of the effective hadron Hamiltonian
can also be used to construct quark wave functions such as equation (1.1). The advantage over
cluster models is that these functions are not simply assumed; they are actually calculated
in the effective theory. The assumption that the nucleus is a system of independent nucleons
can be tested by compariﬁg with the results from the quark Hamiltonian, and effects of quark
antisymmetrization are also investigated as in clusters models.

The flip-flop model Hamiltonian confines the nearest-neighbor quarks in each cluster
separately, when the clusters are in color-singlet states (when they are not, six quarks can also
cluster together). With an adiabatic theory, the effective cluster-cluster potential is extracted.
The effective potential is used to construct a hadronic Hamiltonian whose eigenfunctions ¢
lead to cluster approximations of the kind of equation (1.1). Those approximations have been

tested both in small nuclei and in nuclear matter [11,12,13,14,15,16].

3The term quark-cluster model is frequently found in the literature. To avoid confusion with the first kind
of models, we call them simply quark models
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- The quark model that we introduce in this dissertation is an extension into finite nuclei
of the model for nuclear matter proposed by Koltun et al [17,18,19,20]. In this model; the
one-dimensional Hamiltonian is exactly solvable and its solutions are of the Bethe ansatz type
(chapter 4). An effective hadron theory which reproduces the energy spectrum very closely,
is extracted from the model; in this effective theory the nucleus is a system of nucleons. Two
different approximation schemes will be constructed using the effective theory. In the first
approximation, the internal structure of nucleons is considered to be completely independent
of the presence of other nucleons; wave functions of the form of equation (1.1) are then used.
We will refer to this approximation as the impulse approximation. The second approximation
—cluster approximation— also assumes a nucleus formed by separate nucleons, but their
internal structure is affected by other nucleons through quark exchange. The states of the
system are of quark nature, derived from a combination of nucleon effective wave functions
and quark states of the effective nucleon.

The model does not constitute a realistic theory of nuclear dynamics in terms of quark
degrees of freedom. Yet it is a useful tool in the search for quark effects in the nucleus, other
than those already present at the nucleon level; this model retains the minimun aspects of
quark dynamics that —in our opinion— may lead to quark effects. For the purpose of our
study, the quark model is regarded as if it was an accurate representation of the real world; its
results are considered as “experimental” data. The results derived from the approximations
based on the effective theory are given the status of “theoretical” predictions. If the only
role of quark dynamics in the nucleus is to fix the internal structure of the nucleons, then
the “theoretical” predictions should agree with the “experimental” data. This hypothesis
will be tested by investigating the behavior of some dynamical functions related to scattering
experiments, for a deuteron-like target.

The kind of questions that we will investigate are mostly the same that have been ad-
dressed in the flip-flop model. However, we use different methods; our system allows us to
compute observables analytically, while in the flip-flop model Monte Carlo techniques have
been. used. The results we obtain also show some differences with the flip-flop model results

as discussed in chapter 7.
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A mathematical definition of the observables that we will study is found in chapter 2,
and their relation to scattering cross sections is discussed in chapter 3. The observables of

interest are:

1. Quark momentum distribution: the proba.bih'fy of finding a quark with some given
momentum, inside the nucleus. It can be measured in deep-inelastic scattering experi-

ments.

2. Elastic form factor: Fourier transform of the density of quarks in the nucleus, which

is related to the elastic scattering cross section.

3. Quark correlation function: Fourier transform of the probability of finding two
quarks at a given distance from each other. In order to discuss the results in a more
convenient way, it will be separated into two parts: same-color and different-color. The
quark correlation function can be measured indirectly in inelastic scattering experi-
ments; its separate terms could only be measured with probes sensitive to color, which

is not the case in electron scattering.

4. Coulomb sum rule: The sum of the response function (chapter 3) over all possible
energy transfers. It is a combination of the correlation function and the elastic form

factor, which can be measured in inelastic scattering processes.

Bethe ansatz models are usually formulated in coordinate space; eigenstates and eigenval-
ues are derived in an elegant way, but this formulation makes the calculation of correlations
an intractable problem [21]. Kebukawa [22] proposes a different approach by introducing
second quantization in momentum space. Using Kebukawa’s wave function, the observables
that we are interested in can be calculated analytically as shown in chapter 6.

The momentum representation of the Bethe ansatz given in reference [22] is only valid
for fermions with two colors, in which case only clusters of two quarks are obtained. In the
quark model that we use, it has been found [20] that the approximate ground state obtained
from a variational approach has very similar features in the cases of two and three colors; in

spite of the fact that clusters of two quarks are quasibosons, while clusters of three quarks are
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quasifermions. The reason for that is the effective delta-function repulsion among clusters,
which makes the spectrum look the same whether the particles are fermions or bosons. In
view of this, we have decided to restrict our treatment to the two color case; in the future it
may be interesting to extend Kebukawa’s states to the three-color case and to verify whether
the results are in fact very similar.

Our work is contained mainly in chapters 5 through 7, and in the appendices. Chapters 2
and 3 are a review of some results, most of which are standard. The main reason for including
such a survey is to define a consistent notation that will be used in later chapters. In chapter
4 we review the Bethe ansaiz technique as applied to a system of particles with delta-function
interaction; by the end of the chapter (and in appendix C), we give a simplified form of the
Bethe ansatz for two clusters, which we have derived from the results of Kebukawa[22].

The quark model that we use, and the effective hadronic theory are introduced in chapter
5. Chapter 6 and appendices A and B give the detailed calculation of observables. In chapter 7
we show the results obtained; their implications are discussed in chapter 8, where conclusions

and future extensions are outlined.



Chapter 2

Basic tools

In this chapter we summarize some results from many-body theory. A detailed explanation
of most of the topics covered here has been given in several textbooks in many-body theory;
for example references [23] and [24]. The main purpose of this short summary is to define a

consistent notation that will be used throughout the next chapters.

2.1 The symmetric group

Permutations of the symmetric group Sn will be written in the form

v=(v1,v2,...,Vn), (2.1)

where the n coordinates v; are all integers from 1 to n, none of them repeated. The product

of two permutations, pv, is another permutation, ¢, whose coordinates are

o= pr = (“Vuuvza""#'vu)‘ (2'2)

A representation of the symmetric group S, over the space of n-variable functions, is

defined in the following way

U f(z1,..y2n) = f(@uy, o2 Tun )s (2.3)

and if the functions carry also some internal indices «;, a representation of S, is

17 fozl,...,an(mh ey mn) = fa,,l,...,a,,n (zvl PR mun)- (24)
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The normal antisymmetrizer [25, chapter 5] A,(1,...,n) is defined by

1 ~
An(1,2,...,m) = = > (-1)"7, (2.5)
n: l/ESn
where (—1)” stands for the parity of v. A,(1,...,n) is the antisymmetrizer corresponding to

the standard tableau

for a normal tableau of the form

O< fi<fo<--<fm<m,

the antisymmetrizer is defined as
1 —
An(fl;fZ:-'wfm = ”’"Z (26)
m! 5.

the tilde above the sum indicates that it runs only over permutations of the indices which are
in the tableau; namely, the m! permutations of S, for which v; = j, if j is not equal to any of
the indices f; of the tableau. For tableaur with more than one column the antisymmetrizers
are obtained as the product of the antisymmetrizers of each column.

The permutations of m numbers fi, ..., f,, can be generated from the permutations of the
m—1 first numbers by transposing the last one with each of the elements of each permutation;

this implies the following recurrence relation for antisymmetrizers

An(flr")fm = - [ ZTfJ,fm} fl: "a.fm—l)’ ‘ (27)

where fj,l is the representation of a simple transposition of the indices j and [, and 1,, is the
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identity. A direct consequence of this is

il

An(fl;---;fm)An(f1>-~->fm—1) % [1n
An

m—1 .
- Z Afj,fm] Aﬂ(fl:' "7fm~1)
j=1
(flw--;fm .

) (2.8)

A symmetrizer is also defined in a similar way as the antisymmetrizer; for example, for a

normal tableau, (f1, f2,-.., fm), the symmetrizer is

——

Sn(fhf?‘)"')fm)zﬁza' | (29)
‘eSS :

2.2 Second quantization

In second quantization, the states of a system of particles are vectors in a collection of Hilbert
spaces for zero-particles, one-particle, two-particles, etc. The complete space is spanned by a
set of field operators acting on the vacuum state; and the conditions imposed by the exclusion

principle are built in the algebra of the field operators.

2.2.1 Field operators

Consider a field with some internal degree of freedom, in one dimensional space. The field is
described by an operator ¢,(z) and its hermitian conjugate d)l(:c); if the field is fermionic,

the following anticommutation relations must be imposed

{6a(2), 85(¥)} = b8 82 — 1),

(2.10)
{$al®), 45(3)} = {8L(2),85(3)} = 0.

The operator ¢i(m) creates a particle with internal quantum numbers a !, at the position z;
and ¢o(z) annihilates the same particle.
If | 0) is the vacuum state, a basis for the subspace of n particles is given by the vectors
of the form
+oo

IF) = d*z E Fal,---,an(mla"')mn) ¢l1(z1)”'¢1n($n) lO}, (2'11)

- O yernyOim

‘& can represent several internal quantum numbers such as spin, isospin, flavor, color, etc.
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where Fy, . o, is an n-variable function which we will call the wave function ? of the state | F).
This wave function is not required to have any symmetry at all, because the antisymmetry
under exchange of two particles is already implied by the operator algebra.
Since the n coordinates (zi,...,z,) and the n quantum numbers (ai,...,q,) are all
dummy indices, the vector | F') can be written as
+00
[Fy=[ = S P (B 2) 8L, (20) 8L, (20,) 10), (212)
QLyeenyXp
where v is any permutation of S,,. Using ghe anticommutation property for creation operators
we have
1y [T 9 Fasyan(@1y )] 8L (21) - 9L, (2n) [0); (213)
a1, ™
since the wave function does not necessarily have any symmetry, in principle there are n!
wave functions 7 F which correspond to the same state | F).
Another consequence of equation (2.13) is that any nontrivial wave function which is
synﬁmetric under the exchange of two of its arguments leads to a vector | F) that vanishes.

Namely, if the wave function has the property:
An(1,...,n) [Foy,.an(Z1,...,20)] = 0, (2.14)

then the vector | F) is zero.

2.2.2 Momentum representation

We will now find the momentum representation of the n-particle vectors. Only the discrete

case will be discussed, which is obtained if the space is finite

L
—=<z< = 2.1

A

Later, when the Hamiltonian of the system is solved, it will be necessary to introduce periodic

boundary conditions. It will then prove useful to use momentum representation; to rewrite

2We are using the notation of reference [26], in the non-relativistic case
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)

the states in momentum representation, we first write the field operators ¢o(z) and ¢a(z) as

Fourier series

(z-—-—pm) Aap, (2.16)

Sl

22
Z < z-—pm) Ai,p, (2.17)

A
I
N

where the sums run over all integers p and the momentum operators A, , and Ai,p have been

defined as

Alp = /L/z dz exp (z-——pa:) ng( z). (2.19)
: VI -1
The choice of a factor 1/+/L in the Fourier series was made in order to obtain dimensionless
operators Al and A. The operator Al,p creates a particle with momentum 27p/L and internal
quantum numbers a; Aqp annihilates the same particle. Their anticommutators are derived
from equations (2.10)
{Acp, A};,q} = bpq0a,8,
{Aa,mAB,q} = {Al,p,AZa,q} =

If the field operators in the n-particle state, equation (2.11), are replaced by their Fourier

(2.20)

series, the state becomes

Z Z Fal,...,an(pl P 7pn)Ai1,p1 o Aln,pn l O)’ (221)
PilyesPn X140 Cn
where Fy, . on(P1,-..,Pn) are the Fourier coefficients of the wave function
1 L/2

2w
Fasyecan(P1y -1 Pn) = @' exp—i= (121 + -+ + Pnn) Fay (31, -+, 20).

(2.22)

Ln/Z ~L/2

2.2.3 Density and correlation operators

In this section we will assume periodic boundary conditions; therefore, the domain of defini-

tion of the field operators can be extended beyond the interval [ L/2, L /2], according to the
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periodicity condition
da(z) = ¢z + mlL), (2.23)
for any integer m.
We wiH define here density and correlation operators, which will be used in a later section

when matrix elements of one and two-body operators are calculated. The one-particle density

operator is defined as
p2) =Y ¢l(e) dale); (2.24)
o
if the system is in an n-particle state | F'), the probability of finding one particle at the point
z is given by 2 |

p(z) = —(F| p(2) | F). (2.25)

3|+

The Fourier series expansion for the one-particle density can be written in the form

pe)= 3 Xexp (~imae) ala), (2.26)

where the momentum representation of the density operator is
N Ly 2\ L
p(q) / dz exp (z-rqw> pz)
-L/2

> Alp +qhap (2.27)

a,P

When the operator p(g) acts on a state of total momentum @, the result is a state of total
momentum @ + g; therefore, its matrix elements are non-zero only if the total momentum of

the final state equals the initial momentum plus gq. The elastic form factor is defined as

1
n

F(g) = =(iq| plg) |9), (2.28)

where the state | ;) has the same internal structure as |4), but their total momenta differ
by g. If | %) and | f) are both states of n particles, with total momenta differing by ¢, but
| ) #|4q), the inelastic form factor is defined by

Fyi(q) = -:;(fl p(q) |4). (2.29)

3The states are assumed to be normalized; if they are not, a factor of 1/(F|F) must be included.
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Another useful operator is the correlation operator defined as
Py= [ an 32 eLis) 8h(u-+ ) doly + =) 4. (230)
From equation (2.23) it follows that P(z) has also period L; furthermore,
P(z) = P(L - z); (2.31)

therefore, it is enough to consider only the interval 0 < ¢ < L/2.
In the n-particle state | F'), the probability of finding two particles at a distance z from
each other is |

P(z) = (F| P(z) | F). (2.32)

_r
n(n —1)

The Fourier series for the operator p (z) is

P(z) = = Zexp ( z——qm) P(q), (2.33)

where its momentum representation is given by

~ L 2 ~
P(q) = / dz exp z-—L—-qm P(z)
= Z Aap q ar+qAﬁ,rAa,p~ (2.34)
o,B,p,r
Momentum density operators can also be defined. Of particular interest to us is the
one-particle momentum density operator

Np) =Y Al Aay, (2.35)

[+

whose expectation value leads to the momentum distribution
1 -
N(p)=—(F| N(p) | F). (2.36)

The momentum distribution N(p) equals the probability of finding a particle moving with

momentum 27p/ L.
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2.3 Symmetries

2.3.1 Galilean invariance

If the system has translational invariance, then its states are eigenstates of the total momen-

tum operator. This implies that the wave function Fy, 4, (p1,...,Pn) becomes zero unless
the sum of the momenta p1,...,p, equals a constant @ (the total momentum of the system).
Fal,...,an(pl) L ’pn) = 5(P1+ v '+pn"'Q) Foq,...,an(pl) e >pn)~ (237)

Galilean invariance states that if the momenta of all of the particles in the system were
increased by the same quantity, it would remain the same except for an overall increase in
the total momentum. In the language of second quantization this means that the state has

the form

IF)= 3 3 6t +Pn—Q) Fayan(pr=Q/my o pa= Q) AL, - 4L, 4, 10),
al""lan pl !""pn

(2.38)

where @ is the total momentum; here we have assumed periodic boundary conditions. In the

center of momentum frame —the frame where the total momentum is zero— the states can

be written as
IFY= S S 6(pit-+5n) Fayyan(Pry---spn) AL - AL L 10), (2.39)
Q1500 &n PlyeessPr
here the sums over p; no longer run over the integers, but over all rational numbers which

are equal to an integer plus (@ mod n)/n. Likewise the second indices of the field operators

are not integers anymore but rational.

2.3.2 Color symmetry

We will now restrict our treatment to particles with only one internal degree of freedom

which we will call color; this quantum number takes on a finite number of discrete values

ay,az,...,a;. Consider the two-color case (j = 2); we will introduce the simplified notation
o =41, bl = AL, ; (2.40)
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and similarly for annihilation operators. Let us define the color operators

c: = S dlb, | (2.41)

P
c: = Stla,, (2.42)

P
ce = -;-EP: (afap — 8Jb5) 5 (2.43)

these operators have the following commutation relations

[C%,C2] = 2CF, (2.44)
[C3,C8] = £C%, (2.45)

which correspond to the standard form of the SU(2) Lie algebra [27, chapter 6]. Since the
rank of this algebra is 1, there is one Casimir operator which commutes with the Cartan

subalgebra (in this case the operator C§); the Casimir operator has the form
1
C*= 3 [ceCe +C2Cs] + C5Cs. (2.46)

A system has color invariance if its Hamiltonian commutes with both C? and C§. In that
case there exists a set of eigenstates of energy which are also eigenstates of the color operators
C? and C§. We will now investigate what conditions must be satisfied by states of the form
of equation (2.21), in order to be eigenstates of C? and C%. In first quantization, the general

conditions that the wave function must satisfy are well known *

; we will find their equivalent
in second quantization (see theorem below).

In the simplified notation, the operators Al,p in equation (2.21) can be either ag or bi.
All of the terms of the sum which have the same number of operators al and b7 can be
grouped together into one term; for instance, for n = 3 the three terms which have only one
operator al can be added together in the following way

> [ abb(plaPZ)pB)apl blzbls + Fbab(p1>p2>p3)bp1 0 ;[,3 + bea(Pth,Ps)b;[I bizala]
P1,P2,P3

Z fl(Pl;P2;P3) a’p1 bPz bPS’

P1,P2,P3

*See for example the paper by Lieb & Mattis[28].
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where the function fi(p1,p2,p3) has been defined as

f1(p1,p2,P3) = Fars(P1,P2,P3) — Foab(P2,P1,P3) — Foba(P3,P2,P1)- (2.47)

The complete state, equation (2.21), contains also terms with two or three operators a, or
with none at all; therefore, grouping terms together as was done in equation (2.47), we can

write the state in the form

|1Fy= 3 [fo(Pl,P2>P3) b;E, bizbj,s (2.48)

P1:P2,P3

+f1(p1,p2,p3) ail bzz bl;, + f2(p1,p2,p3) a}; G«L bia + f3(p1,p2,p3) 0:;51 IILCLL} 10).

In general, an n-particle state can then be written in the form

|Fy= Enjfm(pl,...,pn)aL'--almb,’imﬂ'-‘bl,,IO>; (2.49)

P1yeePn m=0

each term in the sum over m is an eigenstate of the operator C¢ with eigenvalue ® m — n/2:

|Ym) = Z b(p1,- - ’p"’)ail a 'a’zmbim-n . ‘b};n 10), (2.50)

P1sesPn

C3 1¥m) = (m =3 ) l4m). (2.51)

In a similar way as in equation (2.13) these states can also be written as

) = (1) S [P 9(p,....pn)] a, ---aZmb};mH .8 10), (2.52)

Pis-Pn

where v is any permutation that does not mix the first m indices with the other n—m (v; < m

for ¢ < m). The state |,,) vanishes if and only if
Xm(Pla--wpn) = 07 (2.53)
for any value of the arguments p;, where the function x,, is given by

X‘m(pl) s 7p‘n) = An(11 ) m) A'n(m + 1) e ,TL) ")[)(Pl, cee 7pn)- (254)

The state |1,,) will also be an eigenstate of the Casimir operator C? if the wave function

has certain symmetries given by the following theorem.

®This follows from the definition of C§ which is simply one half of the number of particles with color a
minus the number of particles with color b.
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Theorerﬁ 1 Let
19) =SS (o1, op)ad, - ad 8l o8h[0), (2.55)
P1 Pn

be a non-zero state. Then |1) is an eigenstate of C*

1]

ciy=(1-3) (1-3+1) 10 (2.56)

if, and only if the following two conditions are true

A1, .. D) Ap(m+1,...,n)Y(p1,...,Pn) # 0, (2.57)

A1, I+ D) Ap(m+1,...,0) ¥(p1,...,Pn) = 0, (2.58)

for some integer | in the interval n/2 < | < mn (if | = n the second condition should be

ignored).

The proof will be given at the end of this section. Since the state is not zero, from
equation (2.53) it follows that the second condition in the theorem can only be satisfied if
I > m. If the state |1)) is an eigenstate of C? with eigenvalue as given by the theorem, it is
said to have color [ — n/2; the states of color [ — n/2 form an irreducible color representation
of dimension (2/—n+1). For a given integer m, the state | ¢,,) can belong to irreducible color
representations of color |m —n/2|, |[m —n/2| +1, ..., n/2, depending on the symmetries
of the wave function. If the number of particles n is even, only integer color representations
are attained, and if there is an odd number of particles, the representations obtained have

all half-integer color.

The irreducible representation to which the state | %,,) belongs can be represented by
a tableau with n blocks. The tableauz that represent the irreducible representations of the
group SU(2) have only two rows, and the dimension of the corresponding representation
is (A; — A2 + 1), where A; and A, are the number of blocks of the first and second row ©.
Since | 9p,) belongs to a (2l — n + 1) dimensional representation, we must construct the

corresponding tableau with ! blocks in the first row and the other (n — ) in the second. By

®See for example reference [29], chapter 13.
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[alalala| c5=2

C=1

b [afafa]b] &=

C=0

b
alal  Aalalb]  CTATHTb] om0

alblp]  [alo[6]8] csog

plefblb] ci=2

Figure 2-1: SU(2) irreducible representations for 4-particle states.

convention, the first m blocks (from left to right and downwards) are assigned an index a
and the rest an index b.

In figure 2.1 we show the case of four particles. The three columns in figure 2.1 are a
color singlet, triplet and quintet. Each row corresponds to an eigenvalue of C§; the tableauz
for negative values of C§ are derived from those with positive C§ by exchanging a’s and b’s.

All of the allowed tableauz can be obtained following the rules:

1. On each column the color indices cannot be repeated, and they should appear in order:

first @ and then b. This follows from the condition [ > m.

2. The color indices on each row can be repeated but the a’s must go before the b’s. This

is a consequence of our convention to move all operators al to the left of the operators

bt
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3. The eigenvalues corresponding to a given tableau are:

ce = %(#a’s — 4bs), (2.59)
C= -;—(#blocks on row 1 — #blocks on row 2). (2.60)

The theorem above can be explained in simple terms in the language of tableauz. For
example consider the states of six particles, three of each color

AEDIRE Z1/)(1)1,pz,pe.,1r>4,195,10e)a;£1 ol al 8] b1 61 |0); (2.61)

p1 Pe

following the rules above, 4 different tableaux can be formed with 3 labels a and three b’s;
. [alalale] ) . .
one of them is 2] | which belongs to a color triplet. To obtain the member of the triplet

with C§ = 0, we must use wave functions ¢ such that the function

X(pl; R ,Ps) = A6(1>2>374) A6(47 5) 6)¢(p17' . )p6)>

has the symmetries given by the normal tableau

5
6

1

2

3
4]

namely, x(p1, P2, P3,P4,P5, Pe) is completely antisymmetric under the exchange of the indices
(p1,P2,P3,p4) and on the indices (ps,pe), but it cannot be antisymmetrized under the indices
(p1,P2,P3,P4,p5). Notice that the tableau that specifies the symmetries of the wave function
was obtained by reflecting the tableau that defines the color representation through the plane
y = —=z, and replacing the color indices by the numbers from one to six. We will now proof
the theorem.

Proof of theorem 1: We have already mentioned that the state of equation (2.50) is an
eigenstate of Cg, with eigenvalue m — n/2; therefore, in order to prove that it is also an

eigenstate of C? with eigenvalue C' = [ — n/2 it is sufficient to prove that

(C2)™ 19) # 0,

2.62
()™ gy = o, (262
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Using equation (2.52), the state can be written as

Z ZX Pi1,. '-:pn T : azmbg _H"'bin[()): (263)

where the function y is deﬁned by

X1, Pn) = An(L, ..., m) An(m +1,...,0) $(p1,. .., Pn). (2.64)

Using the definition of the operator C{ we have

Ci hb) — Z Z x(p1, - “,pn)agl‘..azmbzm“...a;j...bin |0)

J =m+1 P1,Pn

Z {lﬂ - Z Tm+1’j:| X(pl’ ce ’p") ail ' im+1bim+2 Pn IO)

Pi,.Pn J=m+2

= (n—-m) Z X(pl,...,pn)a;,‘;1 lm+lbzm+2 by, 10); (2.65)

Pis-sPn

~ in the last step we made use of the fact that x is completely antisymmetric under the exchange
of momenta p; with ¢ greater than m. According to equation (2.53), C$ | ) is not zero if

and only if

X1(P1,-.,0n) = An(l,...om+ 1) Ap(m+1,...,0)¥(p1,...,pn) # 0; (2.66)
the antisymmetrizers An,(m + 2,...,n) and A,(1,...,m) have been omitted according to
equation (2.8). Again, with the help of equation (2.52) we can write

Clg)=(n-m) 3 xi(prr---rpn)ahy ---af, b - [0, (2.67)

P1,-Pn

Aplying the operator C% several times we get the general result

(C2) 14) = (n(” m) X e copa)ah eab b ) 10), (268)

with x; having been defined by

.....

Xi(P1s.»Pn) = An(l,...,m +j) An(m +1,...,n) $(p1,. .., Pn); (2.69)

therefore, the two conditions of the theorem, equations (2.57) and (2.58), are equivalent to

(C9)'"™ [9) # 0,

2.70
()™ ) =0, (2.70)

which concludes the proof.
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2.3.3 Summary

The results obtained in this section can be summarized in the following way: If the system

has color and translational invariance, its eigenstates have the form

1
/—m'm Z iﬁe(Pl,-n,Pn) all ”.azmb;m-u bl‘n IO), (271)
‘ ‘* PlyeenPn .

here the quantum numbers that label the states are: an integer  which is the total momen-

|Q,c,e) =

tum, the color ¢, the number of particles n, the number m which is related to the eigenvalue
of C§ through the relation ¢g = m —n/2, and e which stands for any other quantum numbers
that will be required to specify the energy level.

The color number ¢ can be equal to |m — n/2|, |m —n/2| +1,...,n/2, and the wave
function must satisfy conditions of equations (2.57) and (2.58), where [ = ¢+ n/2. The
normalization constant @, and the factorials in the denominator are simply a matter of
convention at this point. The wave function ). vanishes, unless the sum of its arguments
equals @; and the eigenstate |Q + g, e, ¢) is obtained from equation (2.71) simply by replacing
the wave function by

Ye(pr — q/n,...,pn — q/n).

2.4 Matrix elements of one-body operators

In this section we will derive general expressions for the matrix elements of one-body opera-
tors; two particular cases will be studied which will lead to the momentum distribution and
the form factor. We will consider the one—~dimensional system described in sections 2.2 and
2.3; whose eigenstates have the general form of equation (2.71), and our treatment will be
restricted to operators which do not change the color of the system. One-body operators of

that type have the general form

I'=Y 7(p.9) (al+qap + biﬂbp); (2.72)
g
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when the operator al +q0p acts on the states of the system, equation (2.71), the result is

(2.73)

t N 1 b
a’p+qap IQ’C>Z) - /——m' r————————-——-(n — m)‘ plzp ¢1(P17 sov e 7pn)
X Z5P,Pj a}; "'az!:,'-l»q ) "azmbgmﬂ ”.bln 10);
Cog=1 .

in each term of the sum over j a factor of ¢ can be substracted from the dummy index p;,

which will make the creation operators equal for any j

(2.74)

i—t»qap 1@, ¢,19) \/—\/_n—-——_—— p1§1’n

{Z bppj—q Vi(D1,- - 1D5 = @5 - ,pn)} a:gl ZmblmH .bin |0).

=1

The result for b]L p+qbp 18 similar, but the sum over j runs from m + 1 to n; then, the

operator T' acting on the state |Q,c, ) gives

I‘]Q,cz)_\/_m > (2.75)
Y PlenPa
[2217 q) %i(p1,-- ,pj~q,~--,pn)} af, ol bl ---bl |0);
q g=

and if the states have been normalized, then the matrix elements of the operator I' are

(Q-FQ,C,]CIP‘Q,C,?:) Z Z i:z Q,Q)"/)i(pl,---;pj"‘q,-u,Pn)}

pl) 5Pn T1yeTn =1

Yp(rey .y 7n) (0] br by sy @re - ampal - --ad 85 LB (0); (2.76)

Pm Pm+1

notice that there is no sum over ¢, because only if ¢ = Q' — Q the matrix element is different
from zero. Using the commutation relations among the field operators, it is easy to show

that
(01 Br by s r - amal, -af 88l joy = 30 (1) [Ha(rj—p,,j)}, (2.77)
vES, j=1

where the sum runs over the m!(n — m)! permutations of S, such that v; < j if j < m. This

result can be used to eliminate the sums over indices r; in the matrix element of T, leading
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to
. 1
(Q + Q,C,ff r iQ;ycﬂf) = m plg;pn V (278)
;‘j (-1)” 1/)f(:vu1,---,p»u)} X {Zv(pj ~¢,9) %i(P1,-- P — €5, Pa) | ;
vES, =1 ‘

the term inside the first square brackets is the function t; antisymmetrized on the first m
arguments and the last n—m; namely, it has the form of x,, defined by equation (2.54); thus,
using the notation xJ, and adding a factor of ¢ to the dummy index Pj, the matrix element

can be written in the form

@+a0.cfIT1Q )= 3 wilpi,. .,pn) 2R3, 0) Xh(Prs - 5Pt Pa)- (279)

n
P1yeiPn j=1
Here x7, is a sum of m!(n — m)! functions 1; with their arguments permuted in some way;
therefore, the matrix element of I' has m!(n — m)! terms of the form 1;1; times the function
7. However, since the states are eigenstates of C?, the wave functions have some symmetries
that can be used to reduce the number of terms.
There are two particular cases that are of interest to us, and which will be the subject of

the next two subsections.

2.4.1 Momentum distribution

If the operator I' does not change the total momentum of the system, 7(p, ¢) must be of the

form 6407(p), and the operator becomes
To=_v(p) N(p), (2:80)
P

where N (p) is the momentum density operator defined in page 14. An example of this kind
of operator is the kinetic energy; in general, this type of operator measures some intrinsic

property of the system. The expectation value of T'g is

<Qac)il Lo ‘Q)C7i> =n Z 7(p) N(p)) (281)
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where N(g) is the momenﬁum distribution, equation (2.36). From equation (2.79), with

Y(p,q) = bg,07(p), and f = i we obtain the result

n
(@,¢,3IT1Q,ci) = > ¥B1,--200) Xm(Pr,--,20) Y (05), (2.82)
. P1;ePn ) 7=1
n .
= Z 7(p7l)2 "/)(ph"',p’n)"')pj) Xm(p].’"':pn)"')pj);
Pl sPn j=1

the functions ¢ and x, on the last line have the arguments p; and p,, transposed; comparing
this last result with equation (2.81), the functional form of the momentum distribution can

be extracted

1 n
N(pn) = — Z Zz/)(pl,...,pn,...,pj)xm(pl,...,pn,...,pj). (2.83)
n P1yeiPr—1 J=1
We can now calculate the norm of the states. If 4 is replaced by one, the operator T

becomes the number operator. In that case the expectation value of equation (2.82) becomes

n times the square of the norm; we then have

(Q c le,c 7’ Z 1/) pl; -'7pn)Xm(p1>'-->pn)' (284)

2.4.2 Form factor

The second type of one~-body operators that we will discuss are those such that y(p, ¢) = v(q).

They can be written in the form

r= Z'r ) #(q), (2.85)

where p(g) is the momentum-representation of the one-particle density operator (page 13).

The matrix elements of I' become

(Q + Q7C>fi To lQ,C>i> = n‘Y(Q) Ff,i(Q)> (286)

where Fy; is the inelastic form factor, equation (2.29). Comparing equations (2.86) and

(2.79) we have

Fri(g) =

3

Yo %ilprsespn) Y Xalpryo - uPit 4, PR)- (2.87)
j=1

Pis-0Pn
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The elastic form factor is obtained when f = 4; however in that case the initial and final
states are not completely the same, because the total momehtum on the final state equals the
initial one plus ¢g. According to the discussion following equation (2.71), the wave function
of the final state is the same as the initial one, except for a factor of ¢/n that must be
substracted from all of the arguments; fherefore, the elastic form factor is

F(q Z ’d’(Pl: ap‘n) Z Xm(pl_Q/nw"apj+q—"Q/n>~"7pn’_Q/n); (288)
j=1

Pise-sPn

it can be verified that F'(0) equals the square of the norm, equation (2.84), and therefore if
the state is normalized, then F(0) = 1.

2.5 Expectation value of two—body operators

We will now calculate the expectation value of two-body operators; the general form of
color-invariant, two-body operators is

0=> 3% 6 pqa j+qﬁ ,5;1”_29 ) P(q), (2.89)

7,9 a,ﬁ

where ﬁ(q) is the two-particle correlation operator, equation (2.34). An example of such an
. operator is the potential energy for a system of particles with two body interaction. The
function 6(q) can be assumed to be even, without any loss of generality, because any general
function is the sum of an even function plus an odd function, and if 8 is odd then © becomes

zero. The expectation value of the operator ® can be written in the form
(0) =n(n-1) Z 8(q) P(q), (2.90)

where P(q) is the two-particle correlation function defined by equation (2.32). In the two
color case that we have been considering in the previous sections, the operators A should be

replaced by either a or b, and the same for creation operators

XAzH—qa r—q,8Ar8Ape = (2.91)
ad ol aray + b1, b1 bty + al, bl bray + 6], ol arby;
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then the expectation value of ® can be calculated in the following way

= 6(9)[8: C(q) + 284 D(9)], (2.92)

where C(q) is the same-color correlation function and D(q) the different—color correlation

function defined by

C(q) = 7}; <Z {aZ,Jrqaj_anap + bl+qu_qb,bp}> , (2.93)

p!r

Dlg) = = <Zag+qbr‘qb ap> i (2.94)

notice that the last two terms of equation (2.91) lead to the same result in the calculation of
(©) because 8 is an even function. The normalization constants 3. and f4 are to ensure that

the two correlation functions become 1 at ¢ = 0, and thus they are

Be
Ba

i

n(n — 1) — 2m(n — m), (2.95)

m(n — m). (2.96)

The Fourier transforms of C(g) and D(q) give the probability of finding two particles, of
the same or different color respectively, at some given distance from each other. To calculate

D(q), we aply the operator of equation (2.94) to the eigenstates of the system

R . L
by_gbrap |Q,¢,1) = = Z Yi(p1,. - Pn) (2.97)
P+ T — P 3 & 1 b s T
T \/m!\/(n— m)! o,
SRS i of .
X Z Z 5 D.p; f,Pl Pl T apj+q };mblm-fl pl" T b};ﬂ. ‘0>’
j=1l=m+1
which is very similar to equation (2.73); therefore, carrying out the same steps which lead to

equation (2.79) we obtain the result
m ki3
Z 'l)bpl) . ,pn) Z Z Xm(P17-~ij‘*‘Q»--wPl"%---:Pn)Q (298)
PlsePn i=1l=m+1
a factor of ¢ is added and substracted to the j’th and I’th arguments in x,, .
It is easy to see that the result for C(g) will be similar to that for D(Q), except that

the momentum ¢ is added and substracted to arguments which are both within the first m
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positions or in the last n — m places; hence we have

1
C(‘I)ZF Z Y(P1s- -, Pn) Z Xm (P13 Pit g s PL= s+ 5 Pn) (2.99)
€ PLinPr 1<j<i<m

+ Z Xm(P1,- 25+, PI— G, D) | -
m+1<j<i<n
The momentum distribution, form factor and correlation functions contain information
about the structure of the system. They can be used to calculate matrix elements and
expectation values of one and two-body operators. These‘ functions can all be measured in

certain scattering processes; that will be the subject of the next chapter.



Chapter 3

Scattering theory in momentum

representation

"We will now explain how the dynamical functions that we are interested in (momentum
distribution, form factors and correlation functions) are related to scattering experiments.
Some results from the theory of scattering will be derived, using momentum representation.
We are interested in non-relativistic electron scattering from nuclei; if the target nucleus is
not too heavy, the first order Born approximation is expected to be valid. Our discussion
has been extracted mainly from a review paper by West [30]. We will not discuss how to
obtain empirical information about the quark momentum distribution; it is usually done by
deep inelastic scattering which is a highly relativistic process and falls beyond the scope of
this chapter.

The impulse approximation is also studied in this chapter. The term “impulse” originally
referred to very abrupt and impulsive scattering processes; in those cases, the struck particle
inside the target would be assumed to be free during the short time of the process 1. As a
result, the many-body problem would reduce to a two-body problem. We will use the term
impulse approximation to refer to the general assumption that the intrinsic structure of the

constituents of the target is not changed by their interaction.

!See for example chapter 12 in reference [31].

29
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3.1 Target without internal structure

Consider two different kinds of élementary particles. One kind (target particles) which are
created and annihilated by the operators A;’ﬁ and Ap g, which have simple fermionic com-

mutation relations 2

{Apa Al 5} = 85,9 6(p - P'). (3.1)

The other kind of particles (projectile particles) are created and annihilated by the operators

\I’]T{ o and ¥y ,, which are also assumed to be fermionic
(Fhor ¥} = b 6(k — K, (3.2)

target and projectile operators commute with each other. We will assume that the two kinds
of particles have a mutual interaction of the two-body type, and dependent on the relative
distance (we will not consider interactions dependent upon the internal numbers « and 8);

in the language that we are using, that means that the interaction Hamiltonian has the form
I_
=2 / dp dk dq v(q) lI’l};—q,cz’ﬁqqu,ﬁAp,ﬁ"I’k,a- (3.3)
alﬁ

Consider a system composed of one target particle which is not moving and a projectile
that approaches the target with some initial momentum k and after being scattered, moves
away from the target with a momentum k’. A very large period of time before the collision,
we assume that the interaction between projectile and target is zero; therefore the state of
the system is

i) = o] Al 10); (3.4)

as time goes on, the projectile approaches the target and the interaction is adiabatically
switched on; a very large period of time after the collision, the projectile and target move

freely, away from the point where the target was initially; the final state of the system is then

11 =, 4l 00, (3.5)

?Unlike the previous sections, we will now consider the general case in which momenta are continuous and
three dimensional.
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With the choice of commutation relation of equation (3.2), the wave function of a free
projectile-like particle is
(r] ®f_ 10) = (2m)73/2 xq %7, (3.6)

whefe X is some representation of the internal symmetry group (spinor, bispinor, etc.); with
this normalization, the scattering cross section for the process described above is given by
(32, page 219] '
= m)tm T | H i) P (5.7)
— = (27)* m*® — i .
dQ k ’
if the energy of the initial state equals that of the final state, and zero otherwise; m is the
mass of the projectile. The matrix element of the interaction Hanﬁltomé,n is

(F1H 1) Y- [ dps dps dps u(ps) (3.8)

H1,12

x(0] Aqgﬁ'q’k’,a’ﬂ;;1 ~P3,t1 AI’2+P3 W2 Apy iz ¥py \I'lt,aAI),ﬁ 10);

the expectation value of the operator on the second line becomes

(0] Aqsr Al po s Apas Ab 5 10)(0] T ¥h, 0 T, L [0) (3.9)

= Sl 08,8 0118 Oy o 6(P2) 6(P3 — q) 6(p1 — k) 6(ps + k' — k).

With this last result, the matrix element of the interaction Hamiltonian becomes v(q), and

the scattering cross section is

2 _ (ot m? (g, (3.10)
()., :

the label pt is to emphasize that the target is a point particle. With the normalization that
we are using, v(q) is the Fourier transform of the potential v(r), divided by (27)3. For a
given value of the initial momentum of the projectile k, q and k' are completely specified
by the magnitude of the momentum transfer ¢, because the three momenta must satisfy the
conditions

q=k-k/, (3.11)
2

L= (- K7 (3.12)

thus, if the potential is isotropic, the scattering cross section is a function of ¢ only.
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3.2 Composite target

Let us consider now the case when the target is no longer a point particle but an object
made up of n point particles; the states of the target are now labeled by the total momentum
p, the total internal quantum number § (for example total spin, isospin, etc.), and a set of
quantum numbers e that label the energy levels of the target; the target states are then of
the form

Ip.B,e) = 8], ;. 10), (3.13)

where the operators gt are a superposition of elementary operators 3
&l g = fdpl - '/dpn §(p1+: +pn—P) (3.14)
Xwe(pl - p/n,. ~oPn p/n) Az;hﬁl o ‘Aln)ﬁn'

It has been assumed that the target system is translationally invariant; also, the wave function
we must have the right symmetries that will make the state an irreducible representation of
the internal symmetry group, labeled by 5. The energy of the state |e,8,p) is E. . The

initial and final states of the target—projectile system are
i) = wf 8], 10), (3.15)
5=l 8l 10 (3.16)

and the matrix element of the interaction Hamiltonian is

(fIH |iy= Y [ dp; dps dps v(ps)

K142

X (O ‘ @q"@’,_f‘I’kl’angl_‘pa,ﬂl A;z-{-pg,uz APZ)V'Z ‘I'PI,NI q’i“(’a§g,ﬁ,i l 0>)
= bpa ’U(k - k’) (0] Qq,ﬁl)f [Z/dpzAlﬁk-k',mAPzM @g,ﬁ,i |0); (3.17)
2

the expectation value of the last line vanishes, unless q = k — k’ and 8 = f'. The scattering

cross section becomes, from equation (3.7),

(%)i_’f =n’ (-:%)pt | Fyi(a) 1% (3.18)

3This is a generalization of the result of equation (2.71).
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where the scattering cross section (do/d1), from a point target is given by equation (3.10),
n is the number of particles in the target, and the inelastic form factor Fy;, has been defined
as in equation (2.29)

Fri(q) = %(q,ﬂ,ﬂ p(a) |0,8,1); (3.19)

however the sum in the operator p(q) of page 13 must be replaced by a three-dimensional

integral :
pla) =) / dpALq,uAp,u. (3.20)
o

If the scattering is elastic, the internal state of the target does not change (f = %), and

the cross section becomes

do P (da
aQ

FIMEGIR (3.21)

where F(q) is the elastic form factor, equation (2.28)

F(q) =

S|

(9,8,1] p(q) |0,8,%). (3.22)

3.3 Inclusive scattering

The inelastic scattering cross section derived on the previous section, equation (3.18), is the
cross section for some specific channel defined by the quantum numbers of the final state of
the target: B, f. If no specific channels are selected the final state can include any of the
allowed transitions, and equation (3.7) for the cross section must be modified by summing

over all final states

d?c B . N
(dﬂdw)inc: (2m)" m* — % |[(F1 BT |5) |* 6(E - E); (3.23)

The label inc stands for inclusive scattering, and the energies E and E’ inside the delta

function are the initial and final energies of the system target—projectile

kz

E o= g, (3.24)
kl2 q2

E = — + — + Eﬁl,_f, (325)

2m  2M
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where M is the mass of the target and m the mass of the projectile: The initial and final
states have the same form as in the previous section, and the matrix element of the interaction
Hamiltonian is given by equation (3.17); therefore, the inclusive scattering cross section

becomes

d’c 5 [do :
(_....dﬂ dw)im"" (%) Rlaw) (3.26)

where the response function R(q,w) is defined by

2
Rlaw)=Y 6 (fﬁ + Bpy — Bgi~ w) | Frala) I (3.27)
!

here w is the energy transferred to the target

_ 1l e
w = o—(k* — k7). (3.28)

The initial state is usually the ground state of the target; in that case Eg; < Eg ¢, where
the equal sign is valid only when the final state is also the ground state (elastic channel). As
a consequence, for a given momentum transfer q, the energy transfer must be greater than

or equal to the recoil energy

q2

> 2.
YZou

(3.29)

and the equal sign is attained only if the scattering process is elastic.

The sum over final states in the definition of the response function includes all states both
bound and in the continuum part of the spectrum; in the continuum the sum over f must be
replaced by an integral with some density of states. A theoretical calculation of the response
function is then a complicated matter; however, sum rules are easier to predict. The Coulomb
sum rule [33] is defined as the sum of the response function over all possible energy transfers
w, excluding the elastic channel

o0
R(q) = lim dw R(q,w). (3.30)

+ 2
€—0 ;M'*'e

Using the definition of the response function, the integral is easily evaluated

R(a) = | Fri(a) I* . (3.31)

f#1
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With the definition of the inelastic form factor, equation (3.19), we obtain the result
Ra) = 5200151 (@B @B 7)1 080- [F@F (632
= 3 [ @A 15 | AN 1) 0,6 | Fla)
in the last step we made use of the relation

(0’8", f 1 7(a) | 0,8,1) = 8 6(a - a')(d, A", f | P(q) | 0,8,7). (3.33)

The Coulomb sum rule can then be written as a correlation function

R(a) = = [} (@) - (@)@ ; (3.34)

from the definition of p(q), equation (3.20), we find that

p1(a) #a) = § + P(a), (3.35)

where N is the number operator, and P (q) the momentum-representation of the two-particle

correlation operator. Hence, another way of writing the Coulomb sum rule is

R(q) = =1+ (n— 1) P(a)] - | F(a) - (3.36)

“n
In the normalization that we are using, the two-particle correlation function P(q) equals
one at q = 0; and so does the elastic form factor. Thus, R(q) is zero at q = 0. At

infinite momentum transfer, both P(q) and F(q) vanish, and the Coulomb sum rule goes
asymptotically to 1/n.

3.4 The impulse approximation

Protons and neutrons are not trully elementary, but made up by quarks. However, the dy-
namics of quarks inside the nucleons is a difficult problem. The underlying quark structure
of the nucleons is usually acknowledged by introducing an intrinsic elastic form factor and
a quark-momentum distribution which are empirically measured and assumed to be invari-

ant. With this approximation, the problem of calculating quark-density functions of nuclear



CHAPTER 3. SCATTERING THEORY IN MOMENTUM REPRESENTATION 36

targets can be solved. The problem of explaining theoretically the empirical properties of
the nucleon is left to high energy physicists. Since one of the goals of this dissertation is
to test the validity of that approximation, we will investigate in this section its implications
regarding the functional form of the observables of the nucleus. ‘

Since we are not considering isospin, we will treat protons and neutrons as the same
particle (the nucleon). In the impulse approximation the internal structure of all the nucleons
that form the nucleus is assumed to be the same, and identical to the structure of an isolated
nucleon. The dynamics of the system is separated into two independent levels. Quark
dynamics is used only to study an isolated nucleon; the result of that study gives the following

intrinsic functions of nucleons:

p(x) = density of quarks,

n(p) = quark momentum distribution,

f(a) = elastic form factor of the nucleon,

p(x) = two-quark correlation (probability of finding

two quarks a a distance x from each other).

On the other hand, an effective hadronic theory, in which the nucleons are considered ele-

mentary, is used to study the dynamics of the nucleus; the following functions are calculated:

pr(x) = density of nucleons,
np(p) = momentum distribution of nucleons,
fn(q) = elastic form factor of the nucleus,

(
pr(x) = two-nucleon correlation;

the subindices h stand for hadronic effeciive theory. The quark observables of the nucleus

are then obtained by combining the two levels.

3.4.1 Quark momentum distribution

The quark momentum distribution of the nucleus, N(p), is the probability of finding a quark
with momentum p. If the quark which has momentum p is inside a nucleon which is at rest,

the probability of such event is given by

No(p) = nn(0) n(p). (3.37)
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If the nucleon is moving with momentum q, its internal structure is still the same. The wave
function of the moving nucleon should then have the Galilean invariant form of equation
(2.38); therefore, its momentum distribution is n(p — q/ng), where n, is the number of

quarks inside the nucleon. The quark momentum distribution of the nucleus is then

Nia(p) = /dq nx(q) n(p — q/ng). (3.38)

this result is referred to as the convolution approzimation in the literature [9,14].

3.4.2 Elastic form factor

The probability of finding a nucleon at the position R is given by pn(R). And the probability
of finding a quark in that nucleon, at a position x from the center of mass is p(x). The position
of the quark with respect to the nucleus would be r = R + x. Hence, the quark density in

the nucleus is
pra(x) = [ dR pu(R) plr - R) (3.39)

The Fourier transform of this convolution integral gives the elastic form factor of the nucleus:

Fra(q) = fu(q) f(a)- (3.40)

3.4.3 Two-quark correlation function

Suppose there is a quark at a position r; inside a nucleon which is at the position R; in the
nucleus. Another quark is at the position ry inside another nucleon at R, (figure 3-1). The

probability for these two events is

p(r1) p(rz) pr(R), (3.41)

where R is the position of the second nucleon with respect to the first one (R = Ry — R).

The position of the second quark with respect to the first one is
r=R +ry—r;. (342)

The probability of finding two quarks —from different nucleons— at a relative distance r

from each other is then

Pyis(r) = // dry dry p(r1) p(rs) pa(r + r1 — r2). (3.43)
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Figure 3-1: Two-quark correlation in the impulse approximation. There are two quarks at
the positions r; and rs inside two nucleons which are at the positions R; and Rs.

The two quarks can also come from the same nucleon, in which case
Piame(r) = p(r). (3.44)

If there are ng quarks inside each nucleon and a total of n in the whole nucleus, when two

quarks are picked randomly the probability that they belong to the same nucleon is

ng—1
; 4
n—1" (345)
and the probability that they come from different nucleons is
n—ng
— (3.46)

The two-quark correlation of the nucleus is then

P[A(r) =

1 [ = 0200+ (= ) [ [ e ) o) e 11— 1)] - (3.40)
And its Fourier transform is
Pra(a) = /dr ¢4 P(r)
= ;;1-——1— [(nq -1) /dr ' p(r)
+n—nq) [ des 97 ples) [[des 697 plry) [aR 9B py(R)

= “%I [(ng = 1) pa) + (n — ng) f(a) F(-q) Pr(a)]; (3.48)

n
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if the density of quarks inside the nucleon is spherically symmetric, then f(q) = f(—q) and
we have

1

Pra(q) = —

[(ng = 1) p(@) + (n = ng) F(a) pa(a)] - (3.49)

3.4.4 The closure approximation

In the impulse approximation the one-quark density operator is

prale) = [ dR 7u(R) ol - R (3.50)

and its Fourier transform
pra(aq) = pr(a) p(a). (3.51)

The inelastic form factor becomes

Frifa) = —(Ny1 ala) [No) (o] An(a) 1), (3.52)

where the states | N) and |9) are the quark state of the nucleon, and the state of the nucleus
in the effective theory. If we assume that the initial and final states of the nucleon are the

same, we can write the form factor as

Fti(q) = %ﬂz(d)f | Pr(a) | 4i); (3.53)

h
here f(q) is the elastic form factor of the nucleon, ny is the number of hadrons, and the
second term is the inelastic form factor of the nuclear system in the effective hadronic theory.
This approximation is known as the “closure” approximation.
With this approximation, the Coulomb sum rule, equation (3.31), becomes

f*(a)

Ty

Rra(q) = (71(a) () — (Bn(@))? ; (3.54)

the two expectation values inside the square brackets are related to the hadronic elastic form

factor and hadron correlation function by the relations
(Pr(a)) = nn fr(a), (3.55)

(P1(a) (@) = 7 [1+ (7n — 1) pa(a)], (3.56)
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where fj, and p;, are the elastic form factor and correlation function of the nucleus in the

effective theory. The Coulomb sum rule then becomes

(g
fa@ = L[t - D)l - F@ B@ @8)
At zero momentum transfer the elastic form factors and the hadron correlation function are
1; then R74(0) = 0. In the limit when ¢ goes to infinity f, f, and pj vanish and the Coulomb
sum rule goes to zero and not to one over the number of quarks as would be the case in a
quark theory of the nucleus.

Another important quantity that is usually defined 4, is the function

Il

S(q) = A fgz23§q), (3.58)

which goes to one in the asymptotic hrmt In a real scattering experiment the domain of
energy transfer at which the cross section is measured, is limited by the characteristics of
- the beam. Different peaks at various regions are identified as the result of distinct mech-
anisms: quasielastic scattering, meson production, etc. It is not possible to measure the
general Coulomb sum rule R(g); one had better try to identify the form that the sum rule
would have as constrained by a specific mechanism. For quasielastic scé,ttering, the “closure”
approximation is expected to be valid, and the relevant sum rule is the function S(g). The
cross section for quasielastic scattering peaks at an energy transfer w ~ ¢%/2m, where m
is the mass of the nucleon; beyond that it falls rapidly. The asymptotic behavior far from
the quasielastic peak can be inferred — neglecting the neighboring peaks which are due to
different mechanisms— and S(gq) can be calculated from the empirical data. We will return

to this point in chapters 7 and 8.

#See for example reference [30]



Chapter 4

Many—body system with

delta—function interaction

The problem discussed in this chapter is a one~dimensional system of particles with delta—
function interaction. The field-theoretical formulation of the problem is known as the non-
linear Schrodinger model. It can be solved by introducing a finite volume with periodic
boundary conditions; the Bethe ansatz method is then used, and the limit when the volume
goes to infinity is taken. A more direct and general approach is the inverse scatiering method.
Only the Bethe ansatz approach is reviewed here, because in our model we will be interested
in the case of finite volume.

We will focus our attention first on the case of bosons with no internal degrees of freedom,
and then on the case of fermions with two colors; both cases will be used in chapter 5 to
construct a model of the nucleus and approximation schemes. The two problems that will be
studied have been solved since the 1960’s; there is an extensive bibliography on the subject
which can be found in the review papers of references [34,35,26].

An alternate form of the Bethe ansatz which has not received much attention in the
literature is the momentum representation [36,22]. We will use this approach in the next
chapters, because it makes the calculation of observables a tractable problem. The momentun
representation of the Bethe ansaiz has a smooth functional form in all regions of momentum

space. That is not the case in configuration space: the first derivative of the wave function

41
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has discontinuities across the boundaries of n! regions, ‘where n is the number of particles.
This makes difficult even the calculation of the norm for a small number of particles; as
the number of particles grows, the calculations become more intractable and a calculation of
correlation functions for the general case has not been done.

We will introduce in chapter 6 a new technique to calculate correlation functions and
other observables, using the momentum representation. A crucial factor in those calculations
is the use of a simple form for the states, exploiting the symmetries explained in chapter 2.
By the end of this chapter we will give that simple form in the case of a two-cluster system,

which is an original result from our project.

4.1 The Bethe ansatz

In 1931 H. Bethe proposed a method to construct the eigenfunctions of the one-dimensional
Heisenberg spin chain. Since then, eigenfunctions of the same type have been shown to give
the solution to a diversity of integrable systems in condensed matter and quantum field theory
[34,35,26].

In the context of the many-body system with delta-function interaction, the Bethe ansatz
method was first introduced by Lieb and Liniger[37] in 1963. They treated the problem in
first-quantization; the same approach was used later for the case of fermions [38,39]. We
find it more convenient to use second-quantization, but we will make a connection with
the first-quantization formalism because it gives a more intuitive idea of the system under
consideration. Also, a very extensive study of Bethe ansatz models has been done in first-

quantization.

4.2 Bosonic field without internal degrees of freedom

Within the last two decades, a few non—trivial integrable quantum systems have been studied
in detail; that research has led to the development of the theory of quantum integrable

systems. One of those systems is the nonlinear Schrédinger model 1. It is described by the

' A general discussion of integrable models can be found in reference [40]
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Hamiltonian

-~

7= /+°° dz [0.61(2) 0:0(2) + ¢ 81 (2) 61 () 4(2) 9(2)] (0.1)

—o0

~ the operators (/)T (z) and ¢(z) create and annihilate bosons at the point z; their commutator
is

[#(2),61(9)] = 8= - v). | (4.2)

The equation of motion derived from the Hamiltonian of equation (4.1) is the nonlinear

Schrodinger equation. A state of n bosons has the general form

%

) = / doy -+ [ don (or,. . 2n) #l(er) 91 (@) [ 0); (4.3)

it is easy to see that the condition for | ¢) to be an eigenstate of the nonlinear Schrédinger

Hamiltonian is that the wave function 9 be a solution to the equation

[Z-a—w 5 6(%—%:)] X(En ) = Bxtonee), (1)

j=1 1<j<i<n
where x(21,...,2,) is obtained from 1(z;,...,z,) by making it completely symmetric:
x(z1,- -y 2n) = Sa(l,...,n) P(T1,...,20); (4.5)

the symmetrizer S, has been defined in chapter 2. Equation (4.4) is the Schrédinger equation
for a system of n bosons with an interaction of the form gé(z; — z;), between all pairs of
particles j and [, z; being the position of particle j. The mass of the particles is m, and the
constant ¢ has been defined as ¢ = myg; kinetic and potential énergies are being measured in
units of 1 /2m, namely, the eigenvalue E must be multiplied times 1/2m to convert it into
natural units.

Such a many-body system has been solved in detail by Lieb and Liniger [37]. They have

proved that the eigenfunctions x have the form of the Bethe ansatz

nvES,

x(z1,...,2n) = Z a, 0(zy,,...,2,,) exp (zz kujm,,j) , (4.6)
=1



CHAPTER 4. MANY-BODY SYSTEM WITH DELTA-FUNCTION INTERACTION 44

where p and v are permutations of order n; the step function 6(z,,, ..., ,,) has been defined
as [26, page 632] | |
Lifz, <@, < <2y,

0(zyyy- .. 20, ) = (4.7)
0, otherwise

the numbers {ki, ..., ks,} are called Bethe momenta, and they are the quantum numbers that

label the eigenfunctions x; their sum gives the total momentum of the system
n

Q=Y ki | (4.8)

J=1
To evaluate the coefficients a,, we notice that from equation (4.4) it follows that the
derivatives of y must have certain discontinuities:

. a (9 j=z+€
e]ir(]%' ('5;; - 5?[) X(mla v ;w'n) iz;::mz—e: 2¢c X(mla s ,23-,1) ,a:jzmp (49)

for any pair of indices (7,7). These conditions imply that only one of the n! coefficients a,

is linearly independent; if the coefficient a, is chosen to be 1 when the permutation u is the

identity, then the general expression for a,, is 2
. = H by, — ku; —ic
w )kul—k,,j+ic’

I<j, (m>p;

(4.10)

where, for a fixed permutation g, the product runs only over those pairs ([,7) such that
g1 > pj. The wavefunctions are completely defined by the Bethe momenta {k;}; the sum of

their squares gives the eigenvalue of the Hamiltonian

n

Bk, b)) = D k2 [ P(kr,- ., kn)). (4.11)

j=1
Equations (4.9) can be satisfied only#if all of the Bethe momenta are different. Some of
the momenta can be complex, if the interaction is attractive; in that case they have the same
real part, but different imaginary parts. Except for the cases of complex momenta, which
leads to bound states, the energy spectrum resembles that of a system of fermions, in spite of

the bosonic nature of the field, due to the fact that any pair of momenta k; must be different.

2The details of the derivation of a, are found in reference [37]
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This is an important feature of Bethe ansatz models that we will use in chapter 5 where a
nuclear model is constructed.

The wave function x(z1,...,2,), equation (4.6), is completely symmetric; however, when
the states | ¥) are constructed according to equation (4.3), 1 does not have to be symmetric
bﬁt it can be any function that when symmetrized leads to x(z1,...,2,); for instance, we

can write | ¥) in the form

| Yk, k) = (4.12)

n! /dzl- /dmn Z a, 0(zpy,, ... ¢,,) exp {izn:kjmj} QST(wl)---qST(mn) | 0).

RES, =1
4.2.1 Periodic boundary conditions

If the system of bosons is placed inside a box of length L, with periodic boundary conditions,

periodicity conditions must be imposed on x(z1,...,%,) and its first derivatives
X(=L/2,22,...,2n) = x(L/2,22,...,25), (4.13)
0 0
'&ax(mhmzw ";mn) Izlz-—L/Z = %X(mlym%“';zn) lml——-L/Z; (414)

periodicity on all of the other arguments follows, because x is completely symmetric. This
periodicity condition implies that the Bethe momenta are no longer arbitrary but they must

be a solution to the system of equations [37]

n

ky— kb —dc g
I Hf——ﬁg:elkﬁ, j=1,....n (4.15)
=1, (1) T e

these equations can be written in terms of inverse trigonometric functions; however, we must
keep in mind that the inverse trigonometric functions have an infinite number of branches.
We will use the inverse cotangent function; for points = on the positive real semiaxis, the

following relation holds

1 T+ 1
t7le = — 4.1
cot™ 2z'ln(z-—z') R (4.16)

where, for complex numbers z

Inz=In|z| +46, (4.17)
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and if the phase 6§ is defined within the interval (—m, 7], then the branch of cot™' z that
extends from 7/2 to 0 is obtained. Equation (4.16) can be used to define the analytical

continuation of the function cot™! onto the complex plane

1 .
cot‘lz:——ln(z+z) ; (4.18)

23 z—1
this definition leads to a function which has a branch cut along the segment connecting the
points —i and i; 2 also

- -g < Re(cot™2) < 7. (4.19)

Taking the logarithm on both sides, and using equation (4.18), the system of equations
(4.15) become

or & ,
kj = ——E-nj—!-ij,l, (420)
i=1
2 k; — k
By = Zecotl (-’-———-‘) G #£10), (4.21)
L ¢
ki; = 0 (4.22)

the quantities k;; are called auziliary Bethe momenta; and the numbers n; are any set of
integers. There is an infinite number of solutions k;, but for each given set of numbers {n;}

there corresponds only one of them.

4.2.2 The Bethe ansatz in momentum representation

The derivatives of the wave functions of equation (4.6) are discontinuous at the boundaries of
n! regions of the configuration space 1, ..., Z,; that makes the calculation of matrix elements
of operators an intractable problem. In momentum space, the wave functions are continuous,
as we will see on this subsection.

The mtrodﬁction of periodic boundary conditions constrains the momentum domain. The

allowed values of any physical momenta are integer multiples of 27r/L. The Fourier series of

3If one wants to use a branch of cot™ that is not discontinuous at the origin, one can choose to measure
phases in the interval [0, 27), which leads to a branch cut along the points of the imaginary axis | y |> 4. Such
a branch is discontinuous at the point at infinity.
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the field operators are obtained from equations (2.16) and (2.17), if the indices o are dropped
1 .27
¢T(z) = 7 ; exp (-z—L—pm) VA;f, (4.23)
o(z) ! Z ex <i27r ) A (4.24)
== —pz , .
Ve TP\

where A; and A, are the operators that create and annihilate a particle with momentum
27p/L, and p is an integer. If we substitute the field operators in equation (4.1) by their
Fourier series, then the nonlinear Schrédinger Hamiltonian becomes

A= (2”) szATA t= Y a4l 4, (4.25)

P:q T

We will introduce dimensionless units: if all momenta are measured in units of 2m/L,
then the allowed momenta are integers p; energies, which hitherto have been measured in
units of 1/2m, will now be measured in units of (27/L)?/2m. With this change of units* the
Hamiltonian takes the form

f= Z;PATA + ZAWA A Ay (4.26)

plql
there is only one parameter in the model: the dimensionless quantity ¢L.
The eigenstates of this Hamiltonian are the momentum representation of the Bethe ansatz.
Sasaki and Kebukawa have shown that they are [36, eqs. 2.19-20]
- P —k)tal Al o 4.2
Weom) =2 Y I -k 4l al o, @)
n P12,

veaPrn—1,m 1Sl<jsn

n
g =1+ Y pi (Pig = —P1,5)s (4.28)
=1

where the product is over all pairs of non-repeated indices (I,7) and the sum is over the
integers p; ,», with 1 <i<m < n.
The integers n; and the auxiliary momenta k;; were introduced in equations (4.21) and

(4.22), which in dimensionless units should be written in the form

kj = n;+ Z ki, (4.29)

*The dimensionless quantities that we deal with from now on must be multiplied times 27 /L, in the case
of momenta, and times 27 /mL?® in the case of energies, to convert them into natural units
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B 2”(’“3"7"!)] L, ' V
ki = ot | 2L (G £,  (4.30)
kij = 0 , (4.31)

according to equation (4.19), the real parts of k; ; are between -1/2 and 1/2.

Two-boson system

As a simple example, let us consider the case of only two bosons. There are two Bethe
momenta k; and kj, and only one independent auxiliary quantity k; ,. From equations (4.8)

and (4.29) (with n = 2), it follows that
kl + kz =71 + Ny = Q, (432)

where @) is the total momentum. If the integer ! and the momentum k are defined as

l= 2711 - Q = —2’[7,2 whe Q, (433)
kEkl-‘%:—-kz‘{-%, (434)

the Bethe equations (4.29) become

I 1 4k
E==+4—cot™} {—]). .
2+ﬂ_cot (cL) (4.35)

The states are obtained from equation (4.27), with n = 2

l¥) = \% Z (P12 — k1,2)_1 A11+p1,2A12—P1,2 10)

D12

_ B §(pr+p2—=Q) 4t 41 oy
5L g bk 10) (4.36)

and in terms of the momentum k, it can be written in the form

[9)= =5 3 m-Q/2m-Q/2) 4f,4L |0) (4.37)
P1,p2
b(pr,py) = L ELHP2). (4.38)

-k
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therefore, the internal structure of the two-boson system is determined by the momentum
k, which depends on only one quantum number [. The quantum number is not completely

arbitrary, because in its definition it was implicit the condition
I (mod2)=@Q (mod?2). (4.39)

And [ can be assumed to be positive, without any loss of generality.

4.3 Fermionic field with an internal degree of freedom

If the field has some internal symmetry, which as in chapter 2 we call color, the nonlinear

Schrédinger Hamiltonian becomes

F=[d {z 0.01(2) 6uu(e) + z; ol(2) 8l() do(e) dala) |5 (4.40)

it has been assumed that the interaction is color invariant. If the field is fermionic, then
{$al®), 85(¥)} = bap 6(z — ), (4.41)
{$alz), 85 (1)} = {#1(),85(®)} = 0 (4.42)

and the color indices in the interaction term must be different, since two fermions with the
same quantum numbers cannot be created. If the field operators are substituted by their

Fourier series, equations (2.16) and (2.17), the Hamiltonian becomes
( ) Z AO‘PA @,p + 7 Z Z Aap+q ﬁ'r qAﬁ;T‘AC‘;P‘ (443)
a;éBP,Q;

If there are only two colors (a and b), using the simplified notation defined in equation (2.40),

H can be written as

( ) Zp ap—[—bb 202 p+q, b (4.44)

p,a,T

Let us now look at the eigenvalue problem

H |9)=E |¥) (4.45)
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since I:T commutes with the number operator, and with the color operators C§¢ and C2,
equations (2.43) and (2.46), |¥) must have the general form of equation (2.71)
W)= X dlerpa) ol el ] 8 10). (4.46)
PP .
For a given number of particles, n, the color of the states |1) can take any value ¢ = [ —n/2

theorem 1, page 18), where [ must be an integer in the interval
» Pag g

<l<m (4.47)

oS

the 2c + 1 eigenstates of C? corresponding to a value of [ can all be generated from the state
with m = [ (highest weight state), by succesive application of the operator C2.

For example, in figure 2-1 which shows the eigenstates of four particles, the states at the
top of each column are the highest weight states, and the operator C? moves the states one
step down in each column. From theorem 1 (page 18) it follows that the color eigenstates with
I = m must have a wave function 1 such that when it is antisymmetrized under exchange of
its first m and last n — m arguments, equation (2.54), the result is a function x,, with the

following property
(1 —_ Zf',m+1) Xm(pl;---;pn) = O, (448)
i=1

This condition implies that x,, cannot be made more antisymmetric than it already is; to
emphasize that property, we write x,, with a vertical bar separating the groups of arguments

under which it is antisymmetric
X(Pl,-- -3 Pm l pm+17'~'7pn)7 (449)

and equation (4.48) means that the vertical bar cannot be moved to the right.

4.3.1 The fermionic Bethe ansatz

In configuration space, the eigenstates of equation (4.46) take the form

(9)= [dor--- [ don v, 20) 8l(21) - 4f(em)d] (emsr) -+ 8] (2a) 10),  (4:50)
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where the wave function ¢ has the property
An(l,'. . ,m) Anm+1,..,0)Y(21,. ., 2.) = x(21, ., &m | Zmy1,- -+, 2n); (4.51)

the antisymmetrizers A, have been defined in chapter 2. Using the configuration-space
representation of the Hamiltonian, equation (4.40), and multiplying both sides in equation

(4.45) by the vector

(OI Aampn e ‘AOQ \P1 (ai = aab):
leads to
N n 82
- 25—-—2— +2 Y 8(zj-=m)| ¥(1,...,n)=A¥(1,...,n), (4.52)
i=1 %% 1<j<l<n

where the complete wave function ¥ has been defined as

‘I’(l:"':n) = <OI Aan»Pn"'Aal,m [1/}) (4‘53)

After a little algebra, which we will not go through here, ¥ can be written in the form

(L, ,n) = Xy s By | Tgagrs 2 Bg) V(@ s Qo | Qa5 00 ); (4.54)

the functions 4 are the color part of the complete wave function. The sum runs only over
those permutations v of S,, which are necessary to generate a basis of the functions with the
symmetry of the Young tableau [m,n — m).

The eigenvalue problem then reduces to solving the following differential equation

_Z-é;z'-+2c Z S(Zj‘ml)} X(T1y - s Tm | Tmg1ye s Tn)
=1 J

1<i<i<n
:Ex(zl,...,mm {mm.H,...,mn), (455)

which is the same many-body problem discussed in section 3.2, but for wave functions with
the symmetry of a two column tableau. Its solution was published independently by Yang

[38] and Gaudin [39] in 1967; the wave functions x are of the Bethe ansatz type

e 2
X(T1y T | Tmt1se- oy Bn) = Z Evp0(2oys. .. 20,) €Xp (zz—ff{“jmuj) . (4.56)

Bv€Sn i=1
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As in the case of the field without internal symmetry, there is a set of Bethe momenta {K}
which governs the dynamics of the system. The coefficients a, of the bosonic Bethe ansatz,
equation (4.6), have been replaced by a set of n! dimensional vectors .f;.

The n! vectors 6—; can be derived from é; (1 is the identity permutation). The symmetry
of the wave function together with the imposition of periodic boundary conditions and the
discontinuities that the derivatives must have, lead to a system of equations which define the

allowed Bethe momenta [38, egs. 20, 22], [41; eqs. 11.58, 11.70]

n-—m . .
Kj — A% +ic/2 LK ,
K- Ao —icj2 =1,..., _
LR Ko T ¢ i=1...,mn (4.57)
n .

Kj—~A°‘—{—zc/2 _ Aﬂ”Aa+ZC ~ |
I;‘[].KJ—AQ“II’C/2 B H A'B——Aa—-zc a——l’,,,,n m) (4-58)

this system of 2n — m equations are the so called Bethe ansatz equations. In contrast to the
case with no internal symmetry, there is an additional set of n — m auxiliary quantities {A%},
but there are also n — m more equations. By taking the logarithm on both sides and using

relation (4.18) the equations become

K; = —-nJ—}—Zk i=1,...,n, (4.59)
n n-—m
Sk = —A°‘+ Zwﬁa a=1,...,n—m; (4.60)
=1

where the numbers n; and A* are integers and the auziliary Bethe momenta k;* and wq g are

defined by

o 2 [2(K; - A%)
= 2o [0 s
a __ AB
wB = %cot“1 [—A——c—é—] , a#pf (4.62)
wee = 0, (4.63)

For a given set of integers {ny,...,Mn,A1,..., An_m} there is a unique solution {K;, A*, A>}.

The total momentum and energy are

Q:ZKj:an+ Z)\a, ' (464)
j=1 j=1 a=1
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E=Y K (4.65)
i=1

4.3.2 Momentum-space representation

As we did in the case of bosons (page 47), we will introduce integer dimensionless units in
which momenta are measured in units of 2r/L and energies in units of 2r?/mL?. In this
system of units the Hamiltonian of equation (4.44) takes the form
o 2 T bTb cL T -ih b .
H= Zp (“pap + D P) + _2;3 Z a’p+qbr——q rCGp; (4'66)
P pgT
its eigenstates are the momentum representation of the fermionic Bethe ansatz. They have
been derived by Kebukawa [22].
The system that we are studying has Galilean invariance; therefore, it should be possible
to write the eigenstates in the simple form of equation (2.38)
9)= X 8Pt e +7a=Q) $(p1=Q/m.- ., pa=Q/nY e, --al b, o8], 10); (467)
PissPn
this state has total momentum Q. The wave function ¥(p1,...,pn) is a function of the Bethe

momenta which are defined by the equations

n—m .
m; o ,
az=1
n n—m
Zk;" = A%+ Zwﬂ'a, a=1,...,n—m; (4.69)
J=1 B=1

where the auziliary momenta ki and w, g are defined as

« _ 1 i [4m(K; - AO‘)]
kF = - cot [ "7 , (4.70)

1, [2r(Ae — AP)

aB . = N Bl Sl
w = —cot [ " } , a#p (4.71)
W = Q. (4.72)

the quantum numbers n; and A* are integers which must satisfy the following conditions

k3 n-—m
Emj +n Z A% =0, (4.73)
a=1

i=1
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mj (mod n) =€ (mod n), j=1,...,m ' (4.74)

it is easy to check that

i}{:, = (4.75)

J=1
This system of equations are equivalent to the Bethe equations (4.59) and (4.60): if K is
replaced by (K; + @/n) and A* by (A* + Q/n) in equations (4.59) through (4.62), and the
result written in dimensionless units, we obtain the equations above. Because of the condition
imposed on the numbers m; and A%, only 2n — m — 1 of them are independent; but we also
have the quantum number Q.
The eigenstates of only one particle with color b have the following form [22]
r—---_.1)'1pzp Y(p1=Q/m,-.,Pa=Q/m) o, ---al, b, |0); (4.76)
1 3esPn

if |9) is the highest weight state in a color multiplet, then it has color ¢ = n/2 —1. The wave
function v is [22]

- (=1)"6(p1+ -~ +pn)
Y(P1s- .-, Pn) = ﬁ;e; R K (4.77)

where V is the set of all simple transpositions of the index n with any other indices
V= {Tl,ﬂv s 7Tn-1,n: 1}; (478)

and (3 is a normalization constant.
The bigger the number of particles with color b, the more difficult it is to write the general
result of Kebukawa, in a simple form such as equation (4.67). In appendix C we discuss the

case of two particles with color b.

Two-fermion system

To close this section we will consider the simple case of only two fermions, one of each color.

With m = 1 and n = 2, equations (4.68) and (4.69) become

K;= 3;-]- + kj, j=1,2 (4.79)

ky 4+ by = ), (4.80)



CHAPTER 4. MANY-BODY SYSTEM WITH DELTA-FUNCTION INTERACTION 55

where k; and ky are given by

d7(K; — A)

1
k== t"l[
7 ﬂ_co cL

J, i=12. (4.81)
the last two equations can be consistent only if

K1+ Ky — 2A = 0; (4.82)

but, since the sum of the momenta Kj is zero, A must vanish, and the auxiliary momenta

become :
1 _, /4K
kl = ;COt t (——(;f) = --kg. (483)
This relation leads to
my=-—mg =m> 0; (4.84)

and there is only one equation left which can written as

m 1 /47K .
K-—E—-F;r—cot < 7 ), (4.85)
where K was defined as
K =K; =—-K,. (4.86)

In view of equation (4.74), the quantum number m must be even if @ is even, and vice
versa. The states are
)= " $(pr—Q/n,p2—Q/n) af,b], |0); (4.87)
P1,p2

and the wave function is obtained from equation (4.77)

B8 5(P1+P2)‘

Notice that the wave function for the two-boson system, equation (4.38), can be replaced
by its completely symmetric component, which is identical to the wave function of the two-
fermions. Also, the Bethe equation that defines the momentum K is the same in the two-

fermion and two-boson systems; therefore, the energy spectra of the two systems are identical.
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4.4 Clustering

The Bethe momenta {K;, A} must be all different. All of the numbers A% are real, while
the numbers K; can be complex only if the interaction is attractive (¢ < 0). The quantum
numbers m; must be all different in the repulsive case. On the other han&, if the interaction
is attractive, two quantum numbers m; can be identical (but no more than two) (39]; for each
pair of identical numbers there are two momenta K; which have a non zero imaginary part.

Gaudin has studied the attractive gas in detail [42, chapter XII]. He has shown that when
there is an equal number of fermions of each color, all of the momenta K; can be complex.
There are only n/2 quantum numbers which are all repeated twice, and the resulting energy
spectrum is very similar to the spectrum of a system of n/2 bosons (if the bound states of
the bosons are ignored). The spectrum is the same as that of the bosonic Bethe ansatz with
delta-function interaction of strength 2g; but the effective interaction among the bosons is
repulsive 5. Each pseudo-boson can be identified as a cluster of two fermions, one of each
color.

The energy E is related to the Bethe momenta by equation (4.65); thus

o

K? = Real number; (4.89)

J=1

this relation, together with (4.75), imply that if one of the Bethe momenta K; is complex,
there must be another momentum K; which is its complex conjugate. As a consequence, in
the case of m clusters there are m distinct complex momenta K, and the other m are their
complex conjugates. In the next two sections we will study in more detail the systems of one

and two clusters.

4.4.1 One-cluster system

The one-cluster system is obtained from the states of two fermions, one of each color —

equation (4.87)— if the two momenta K; and K, are complex. Since the two momenta must

®This point is explained in more detail in the next chapter, when the effective hadronic theory is constructed.
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be complex conjugate of each other, equation (4.86) implies that K is purely imaginary

K =ia, " (o is real) (4.90)

and equation (4.85) leads to
m = 0, - (4.91)
a = ~-71; coth™? <é§£}-) - (4.92)

The one-cluster state is then

1) = 3 (p1-Q/2,p2—-Q/2) af, 81, 10), (4.93)
P1,P2

where the total momentum @ must be even, in view of equation (4.74), and the wave function,

equation (4.88), becomes

_ B b(pr+p2)
"p(Pl;PZ) - p% + ol . (494)

4.4.2 Two-cluster system

We will now construct the states of two clusters. The Bethe ansatz for a system of four

fermions, two of each color, is (appendix C)

9= 2 0m-Q/tp-Q/4) o el 8Lel, 10) (4.95)
P1,P2,P3,P4
where the wave function is
A
(-1)”6(?1 +p2+p3+p4) Klll+é—;§— Kvl + KV:}
Q 5 5 ) = B - Uy ’
('Pl P2,p3 P4) u§4 (p3 _ Kw)(m — Kw) - Ky, pi+ps—K,, —K,,
(4.96)

and the number §, is defined as

0,if Ky, + Kyy =0
5, = . (4.97)

1, otherwise

The state | §2) belongs to a color singlet (¢ = m — n/2 = 0). The two-cluster states are
obtained if all of the momenta K ; are complex. Two of them must be the complex conjugate
of the other two

K, = K3, K3 = Kj; (4.98)
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and since their sum must vanish, there is only one independent quantity K from which all

four momenta can be derived
Ki=K;=-K;=-Ks4= K. (4:99)

As a consequence, the quantum numbers must have the following properties

m; = my = —mg = —my = 2m, (4.100)
A =22=0, (4.101)
A=A = A (4.102)

The number m can be assumed to be positive; it cannot be zero, because the four numbers
m; cannot be all equal (there are no clusters of four quarks). In principle, m can then be
any positive integer divided by two; however, the numbers m; must satisfy equation (4.74),

which in terms of m becomes
2m (mod 4) = —2m (mod 4) = @ (mod 4); (4.103)

these equations can be valid only if m and @ /2 are integers, and they are both either even

or odd; hence, the allowed quantum numbers are
m=1,2,3,... (4.104)

0, £4, +8, +12, ... if m is even
Q= (4.105)
42, 46, +10,... if m is odd
The Bethe equations (4.68) and (4.69) can be written as only two equations in terms of
K and A

K= ﬁ;- +ky o+ ko, (4.106)
w = 2Re(ky — k), (4.107)

where the auxiliary momenta ki, kz and w are defined as

kj = -j;cot"l [M—(K -cé-l)jA)} ) (4.108)

1 1 [4mA
w = ;cot (E) (4.109)
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cL |m K A
-2 | 1]0.4504 + i 0.2516 | 0.4520
2| 2(0.9747 + i 0.2470 | 0.9749
-2 | 4 |1.9873 + i 0.2460 | 1.9874
-10{ 1 |0.3218 + i 0.8209 | 0.3227
-10| 2 | 0.8845 + i 0.8092 | 0.8845
-10| 4 | 1.9381 + i 0.8067 | 1.9381
-20| 1{0.2780 + i 1.5924 | 0.2778
-20| 2 /0.8263 + i 1.5919 | 0.8263
-20| 4 |1.8886 + i 1.5917 | 1.8886

Table 4.1: Bethe momenta for the two-cluster system.

We have solved these equations numerically, using the Newton-Raphson algorithm. The
results for some values of the parameter ¢L and the quantum number m are shown in table 4-
1 and figure 4-1. As cL goes to zero, Re K becomes m/2 and as —cL is increased it decreases
monotonically towards (m/2 — 1/4). The momentum A is greater than the real part of K
but it is very close to it; in fact in figure 4-1 the two values cannot be distinguished. The -
imaginary part of K is greater than —cL /4 but it approaches that value as —cL increases
(figure 4-1).

The total energy ® is given by equation (4.65), which as a function of K only, becomes
Em = 4(Re K)? — 4(Im K )?; (4.110)

In figure 4-2 we have plotted the energy per quark on the first four levels, for some range of

the parameter cL.

To end this chapter, we will prove some properties of the wave function §1. Before we list

®This is the energy in the zero-momentum frame; in general, a factor Q%/4 should be added. Remember
that we are measuring energies in dimensionless units; to convert them into natural units, they must be
multiplied times 272 /mL®.
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Figure 4-1: Solution to the Bethe equations. Left side: real part of K in the first four levels.
Right hand side: imaginary part of K for m=1 (solid) and m=4 (dashed); the broken line is
the function —cL /4.

the properties, we point out that for a given permutation v, equation (4.99) implies
K, = (K.,)", (7=1,2,3,4) (4.111)

K, =

7

~K;, (j=1,2,3,4) (4.112)

where the permutations p and o are defined as
p="TTs4v, (4.113)

g = T1’4 T2,3 v, (4114)

and T}, are simple transpositions of the indices j and I (chapter 2).

Proposition 1 Q(p1,p2,ps,ps) is real.
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Energy

Figure 4-2: Energy spectrum of the two-cluster system.

Proof. Any sum over pernutations of order four can be written as

Z fV = Z(fu + f;.t)7

vESy veV

where p = Ty 5 T34 v, and V is the set of the twelve permutations such that #; < 7y (v
stands for the inverse of v); in simpler terms, V is the set of permutations (v1,vs,vs,v4) in

which the digit 1 appears to the left of the digit 2. The wave function  has the form

Q(p1,p2,p3,P4) = B 6(p1+p2+p3+pa) Y fu, (4.115)
11654
(_1)1, [ KV1 KVI + KVs ]
— b, . 4.116
Lp1 — Koy p1t+p3— Ky — Ky, ( )

fv=
’ (p3 - Kus)(p4 - Kw)
Since the numbers p; are real, the complex conjugate of f, is
K},

K;, + K}, } .
r1— K3, ’

D1 +p3_K;1 —ths

fr= (=1)”
Y (ps - K )(pa— K3,) |
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and usiné equation (4.111) i.:ogether with the facts that 6, = ¢, and (1) = (=1)*, it follows
that

2= fu
which implies

Q(p1,p2,03,p4) = B 6(pr+pa+p3+pa) 2 Re (Z fu) ;
vev

the normalization constant B can be chosen to be real, which makes § real.

Proposition 2 Q(p1,p2,ps,ps) = Qps,p2,P1,P4)

Proof. If we define
p=vIigs,

then

1 = V3, H2 = V3,

H3 = Vi, H4 = Vg,

and the sum over the symmetric group can be written in the form

> fu(P1.p2,03,p1) = > FulP1,P2,P3,P4). (4.117)
vESy . vES,

If §, =0, then K,,, = ~K,, and

(_1)# K#a
(p1 — Ky )(p3 — Ky )(pa — Kp,)
(_1)V KVI
(Pl - Kva )(Pa - KVI)(p4 - Kw)
fu(pa, p2,p1,Pa);

fp(pl)p27p37p4) -

I

in the second step we used the relation (—1)¥ = —(—-1)".
If §, = 1, then
(= 1)"(Kpps — Kpyp1)
fulp1,p2,p3,4) = - >
g (Pl _Kux)(p3"Kﬂ3)(p4~Ku4)(pl +p3 — Ky, "Kua)
(=1)"(Eyp1 — Kuyps)
(pl - KVa)(p3 - KV1)(p4 - Ku4)(p1 + p3 — KVI - Kvs)
= fv(P37P2)P1,P4);
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‘thus § can be written as

Qp1,p2,ps,p4) = B 8(pr+pa+ps+ps) Y, fulps,p2,p1,p4)
) VESy V
= Q(p37P2,P1>‘P4)-

Proposition 3 Q(p1,p2,p3,ps) — Up2,p1,03,04) = Up2,p1,04,03) — (1,2, P4,D3)

Proof.

Q(p2,p1,p4,p3) — Up1, P2, P4, P3)

(=1
B 6(p1 TPt +p4),,§4 (p4”‘Ku3 )(p3”Ku4) ,
X [ KVI _ KV; KVx + KVa iy KVI + KVa ]
p2—Ky p1—Ky  pitpa-K, —Kuy U p2tpa-K,—-Ky '
(=1
B 5(1’1 +p2+ps +p4) ,,;,1 (Pa-Ku3)(P4-'KV4)
X [ KVx _ KV1 +6, KVz + KV; ~ 6, KVz + KV4 ] )
pl-Kul Pz‘Kul p1+p4_Ku2"Ku4 p2+p4"Ku2"’Ku3

Since the sum of the four Bethe momenta is zero,
Kyz + Ky4 = "'Kyl - KVS’

and we have

Q(p2,p1,p4,p3) — Up1,P2, P4, P3)

(=1)”
= B§(pr+p2+pst+ps)
VZZSQ (P3— Koy )(pa— Ko, )
% [ Klll _ KV1 + 5 Klq + KV3 . 6 Klll + KU3
pi—K,, p2—K,, patps—K,, K, “pi+ps—K, —K,]|’

= Qp1,p2,P3,Ps) — Up2,P1,P3,P4).

The last two propositions can be used to check that the state | ) in fact belongs to a

color singlet. The antisymmetrized wave function, equation (2.54), is defined as

X(P1>P27P3,P4) - A4(172) A4(374) Q(pl)pZ)p-?,p‘l); (4118)

using proposition 3, we have

1
x(p1,P2,P3,P4) = 3 [Qp1,p2,P3,P4) — QUp2, P1,P3,P4)] - (4.119)
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With proposition 2 it is easy to check that

A4(17273) X = X(pl;p27p3)p4) - X(Pl;p3yp2,P4) - X(p37p27p1:p4) = O) (4120)

which implies. that x cannot be antisymmetrized in the first three arguments. This is the
condition imposed on a color singlet (Theorem 1, chapter 2).

We have rewritten the momentum representation of the Bethe ansatz in a form simpler
than that found in reference [22]. This simplification will prove to be crucial for the compu-
tation of observables, in the case of a small system (chapter 6). Hopefully, in the future this

approach will help solve the problem of calculating correlations in general.



Chapter 5

A quark model of the nucleus

In chapter 4 we have discussed a many-fermion system which is exactly solvable. We will
now develop a quark model of the nucleus which leads to the same Hamiltonian of chapter 4.
This work is based on the model for nuclear matter introduced by Koltun et al [17,18,19,20];
in their model they studied the ground state of infinite nuclear matter. We will extend the
model to the study of dynamical functions of a finite system.

A deuteron-like system is studied, whose eigenstates are given by the two cluster states
introduced in chapter 4. From the quark Hamiltonian an effective hadron theory is extracted,
in which each cluster is viewed as an elementary particle; the Hamiltonian for the system
of clusters (nucleons) is also of the Bethe ansatz type. And from the effective theory two
approximation schemes are constructed: the impulse approximation and the cluster approxi-
mation. The quark model and the two approximations will be used in later chapters to search

for experiments which could not be explained with the traditional picture of the nucleus.

5.1 The quark model

We consider the nucleus as a one-dimensional system of quarks. The quarks are of fermionic
nature and interact through an attractive delta-function potential. Only the minimum aspects
of quark dynamics that may lead to quark effects in the nucleus are retained; thus, the only

internal degree of freedom that we will consider is color.

65
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As explained in chapter 4, such a system of fermions exhibits the phenomenon of cluster-
ing; the maximum number of quarks in each cluster is limited by the number of values that
the internal degree of freedom (color) can take. Another remarkable feature of the system is
that the clusters behave like a gas of fermions, even in the case of only two colors (clusters
of two quarks). As a consequence, the two and three-color cases lead to similar results *

In view of the similarity between the two and three-color problems, and in order to keep
the calculations as simple as possible, our treatment will be restricted to the two-color case;
thus, the nucleons in our deuteron have only two quarks. It remains as a future goal of our
research to extend the results of this dissertation to the three color case.

The attractive delta-function interaction binds the quarks into nucleons; and the nucleons
have an effective repulsive interaction as we will see later in the chapter. The long range
attraction among nucleons which keeps them bound in the nucleus is represented by placing
the system inside a finite volume L, of nuclear dimension. The model is solved by means of
the Bethe ansatz;, if periodic boundary conditions are imposed (chapter 4). This choice of
boundary conditions leads also to realistic scattering results; i.e. the target is translationally
invariant. However, the price we pay for obtaining an exactly solvable model is the loss of
the continuity of dynamical functions of momentum: the observables that we will calculate
in chapter 6 are all discrete functions of momentum.

The Hamiltonian of the quark system described above is exactly the same that was studied
in chapter 4; in momentwm representation, it becomes

H, = Zp aiD + b b )+ P Z ap“L,‘bI2 2oy py s (56.1)
P1 P27
where ¢ = mgyg, the constant mg is the mass of the quarks and g is the strength of the

interaction; since the interaction is attractive, the constant g is negative.

5.1.1 Physical parameters and units

There are three physical parameters in the quark model: the nuclear volume L, the mass

of the quarks mg, and the strength of the interaction g. The mathematical solution of the

!See for example the discussion of the ground state of nuclear matter given by Tosa [18].
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model, investigated in chapter 4, is governed by only one dimensionless parameter
el = mggL. (¢ <0) (5.2)

In the interpretation of the physical meaning of the mathematical solution, L fixes the momen-
tum scale —the dimensionless momenta of chapter 4 must be multiplied by 27 /L to convert
them into natural units. And both my aﬁd L determine the energy scale —dimensionless
energies are transformed into natural units by multiplying them by 272 /mgL2.

The parameters my and g in our model are not directly measurable; they must be adjusted
to obtain agreement with some other empirically known properties of the nucleus. Therefore,

it is more convenient to define energy and momentum scales in terms of two constants R and

b defined as follows

1

R = -3, (5.3)
2
[

b ——1 '2";;’:;. (5.4)

All lengths will be given in units of R, momenta in units of 1/R and energies in units of b.
We will leave the Hamiltonian, wave functions and Bethe momenta in dimensionless units, as
in chapter 4, in ordef to make the algebra of chapter 6 simpler. The procedure that we will
use is the following: first, the value of the nuclear volume, in units of R, is given:L/R. This
value is used as the parameter —cI in the equations of chapter 4. The equations are used in
dimensionless form. Finally, when we show the results, we transform all momenta into units
of 1/R by multiplying them by 2w R/L; and energies are given in units of b by multiplying
them by (27 R/L)%.

We will now explain the physical meaning of R and b. In section 4.4 it was mentioned
that a one-cluster system has only one Bethe momentum « which is the solution to equation
(4.92)%. For a fixed value of c, if the volume L is very large, then « goes to ¢/2, in natural
units. Thus R = —1/c is a proper length associated with the cluster (nucleon); it will be
shown in chapter 6 that R gives a good measure of the diameter of the nucleon. Then, the

parameter L/R measures the ratio of the nuclear volume to the diameter of the nucleon.

*Tts solution appears in figure 5-2 as the dashed curve.
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In a real deuteron, that ratio is of the order of 2.5. However, our model deuteron is one
dimensional, and the value of the parameter L/R that gives us a more realistic value of the
energy is 5, as we will éxplain when we discuss the energy spectrum at the end of this section.

According to equation (4.65), the energy of the two-fermion system (in natural units) is

— 2r? 2 2y.
E = m—z (K7 + K3); - (5.5)
for the isolated nucleon -
el
K1 = —Kz ~ 7,"1;, (56)
and the binding energy becomes
2
c
E = —Zn_;;’ (5.7)

therefore, b is twice the binding energy of the nucleon. The mass of the nucleon, M, equals

the mass of the two quarks minus the binding energy F

b 1

M=2me =5 = ire

b
- = (5.8)

The parameter R is of the order of a fermi, and the mass of the nucleon of the order of

1000 M eV; therefore, the energy and momentum scales that we use are of the order
b~ 40 MeV, (5.9)

% ~ 200 MeV. (5.10)

5.1.2 Nuclear states in the quark model

Since we are trying to model a deuteron in which each nucleon is a cluster of quarks, we
consider only cluster states. The states of the deuteron system are the two-cluster states
introduced in section 4.4.2. The total momentum @ has to be even, and /2 must be odd if
the quantum number m is odd and vice versa; therefore, in the center of momentum frame

the states can be written as

1Q2) = —1— Z Q(ry,72,73,74) aT a:{zbjabi, 10), (5.11)

Ty
(rite€)i=1...4
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where ¢ is either 0 or 1 /2, depending on whether m is even or odd
e=m (mod 2)/2. (6.12)

If € = 1/2, the sum over 7; + 1/2 stands for the sum over the sequence of rational numbers

r; = +£1/2,+3/2,£5/2,... ; the wave function is

Q(’l"l,’r‘z,’rg)h}) =B Z (
VES4

-6, , (b.13
r3_KV3)(r4—KV4) rl_Klll ) r1+lr3—KU1_KV3 ( )

—1)%8 (r1+ro+ra+74) [ Koy K, + K,
(

where B is a normalization constant. The two-cluster states are completely determined
by only one independent momentum K. This Bethe momentum is uniquely defined by a

quantum number m and the parameter L, through the equations given in section 4.4.3

K = % + ;l_l-cot“1 {ﬂ%—ﬂ] + —71; cot™! [ﬂ(—{c{—fﬂ] ) (5.14)
cot™! (%) =2 Re {cot”1 [ﬁr—(—lgf—.—j}—)—] ~ cot™! [%ﬂ%ﬂl] } . (5.15)

Figure 5-1 ® shows the real part of K in the first four states, and for different values of L;
as L goes to zero, Re(K) goes to infinity and as L increases it goes to zero. The imaginary
part of K appears in figure 5-2, for the ground state; it is very close to the momentum « of
the one-cluster system (chapter 4). It also goes asymptotically to 1/2R. The imaginary part
of K becomes even closer to the momentum of the one-cluster system, for larger values of

the quantum number m.

From equation (4.110) we obtain the total energy, which in units of b becomes is
4rR\?
E, = (_’%.) [(Re KY - (Im K] ; (5.16)

In figure 5-3 we have plotted the energy in the first four levels, for some range of the parameter
L/R. As L goes to infinity, the energy goes asymptotically to -1, which in our system of units
corresponds to the internal binding energy of the two clusters. In a real deuteron the nuclear
energy is small compared to the internal binding energy of the nucleons; this is true in our
model only for L > 4, where the ground state energy approaches -1. Then, on the basis of

deuteron energetics, we should give a value of the order of 5 to the parameter L/R.

Figures 5-1, and 5-2 are the equivalent of figure 4-1, in the system of units introduced in this chapter.
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Re(K) (units: 1/R)

0 5 10 15 20
L (units: R)

Figure 5-1: Real part of the Bethe momentum of the two-nucleon system, in the first four
states. The solid lines are the exact solution, and the dashed lines are obtained with the
hadronic theory.

5.2 Hadron picture of the nucleus

The solution to equations (5.14) and (5.15) gives a value of A which is always greater than,

but very close to Re K. If we take the limit A — Re K, the two equations become

_ 1 27rk> _
k,m—{»ﬂ_cot (cL , (m=1,2,3,..) (5.17)

where k = 2 Re(K). The imaginary part of K ( @ = Im K ), can also be calculated up to a

good approximation by an equation that involves o and ¢L only

1 dra
= —=coth™* (———-) : 5.18
a ~co " (5.18)
In figures 5-1 and 5-2, the results of this approximation (dashed lines) are compared with
the exact results. It can be seen that the approximation is very good for the whole range of

the parameter L and it becomes even better at large L. Equations (5.14) and (5.15), which



CHAPTER 5. A QUARK MODEL OF THE NUCLEUS ' 71

1 i ' H
2 | i
—
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0 5 10 15 20

L (units: R)

Figure 5-2: Imaginary part of the Bethe momentum of the two-nucleon system, in the ground
state (solid line). The dashed line is the Bethe momentum of one cluster. The excited states
of the deuteron are all between the solid and the dashed lines, and approach the solution of
the cluster as m gets larger.

were coupled, have then been separated into two independent equations that determine the
real and imaginary parts of K. Equation (5.18) is the same equation (4.92), of the one-
cluster system, and equation (5.17) looks like the equation for the two boson system with
delta-function interaction; therefore, this approximation can be used to develop an effective
hadron theory.

In the hadron picture, the nucleus is regarded as a system of elementary nucleons, with a
spectrum of quantum numbers similar to the momenta of equation (5.17). The imaginary part
of K arises from the internal structure of the nucleon, which is treated as a separate problem
and its solution requires the study of the quark Hamiltonian but for only one cluster. The
fact that nucleons are not truly elementary will be acknowledged in either one of the following

two ways: by modifying the nuclear density given by the effective hadronic theory replacing
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0 5 10 15
L (in units of R)

Figure 5-3: Energy spectrum of the two-nucleon system showing the first four states. The
energy is given in units of b, (=~ 40 MeV), and the size of the nucleus in units of R (~ 1fm).

the point charges by the quark distribution of charge of a nucleon (impulse approzimation), or
by modifying the eigenstates of the hadronic Hamiltonian replacing the elementary nucleon
operators by the operators that create a nucleon in terms of quarks (cluster approzimation).

In the next section, we will construct the effective hadronic Hamiltonian which will explain
the spectrum given by equation (5.17). In later sections, the eigenstates of the effective

Hamiltonian will be used to develop the impulse and cluster approximations to the quark

model.

5.2.1 The effective hadron Hamiltonian

Consider a system of bosons, which will represent the nucleons in our model, moving inside

the one-dimensional finite volume L, with attractive delta-function interaction of strength g
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(9 < 0). The Hamiltonian of such a system is (see chapter 4)

7= zp2ATA + 1 c"L S oAl Al a4,  (5.19)
P1iP2sa

where A, and AZ are elementary boson operators with simple commutation relations. The
constant ¢, is equal to mpg, where my, is the mass of the nucleon. If we assume that the mass
of the nucleons equals the sum of the masses of its tw-o constituent quarks, then ¢; = 2¢, where
c is the constant in the quark model. The dimensionless units used here are not the same as
in the quark Hamiltonian, because the mass of the quarks m, is not the same as the mass
of the nucleon my. To write the Hamiltonian in the same units as the quark Hamiltonian, it
must be divided by a factor of two which comes from the ratio nucleon to quark mass. Thus

the Hamiltonian for the deuteron-like system, in the hadronic picture becomes

ZpZATA +-—— S oal Al a4, (5.20)

P1:P2:9
The eigenstates of this Hamiltonian have been given in chapter 4. The overall factor of 1/2

does not change the states; they are still given by equation (4.37)

o) = == 3 8(pr+22-Q) wn(pr~@/2) 4f, 4L |0); (5:21)
P1,p2
and the wave function, equation (4.38), is
B
= . .22
wr(p) P (5.22)

The equation that defines the Bethe momentum k must be modified, because the param-
eter cL/4w? that appeared in the Hamiltonian in chapter 4, has now been replaced by cL /27>

in equation (5.20). Equation (4.35) thus becomes

I 1 _1[27k

The overall factor of 1/2 in the Hamiltonian changes the value of the energy E, making it

one half of the value given in chapter 4

H|wy) = k% |wp). (5.24)
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The total momentum @ must be even if [ is even and odd if [ is odd. The quantum
number [ can be any positive integer or zero. If it is positive, k is real; and if [ were zero, k
would be completely imaginary and |wr) would be a bound state of the two bosons. However,
comparing equation (5.23) with equation (5.17) which gives the spectrum that we are trying
to reproduce, we see that in the effective boson system the quantum number [ must be
restricted to the sequence (I = 2,4,6,8,...,2m), that is, any even number except 0.

The hadronic states of the deuteron-like system are then only those states of the two
bosons for which the quantum number [ is even; and so is the total momentum @. The
exclusion of half of the states from the spectrum of the two-boson system to obtain the
hadron spectrum is not at all arbitrary; it has a phy‘sica,l origin which will be explained next.
The periodic boundary conditions forbid those momenta of the quarks which are not integers
(in the units being used); therefore, if a nucleon is a cluster of two quarks, its momentum
must be an even number. The total momentum of the two clusters (Q) then has to be also an
even integer. But if the total momentum of the two particles is even, the quantum number [ in
their Bethe ansatz state has to be even. Thus the exclusion of half of the two-boson spectrum
results from the periodic boundary conditions together with the fact that the hadrons are
not really elementary but made up of two particles.

The two-boson bound state corresponding to [ = 0 does not appear in the effective
hadronic spectrum either; the reason is again the fact that the nucleons are not really bosons
but quasibosons; a cluster of two nucleons cannot be allowed because it would represent
a cluster of four quarks in a totally symmetric state, which in the case of only two colors
constitutes a violation of Pauli’s exclusion principle.

Not only should the spectrum be constrained as a consequence of the internal structure
of the hadrons, but also the states themselves must be modified. If the clusters are to take
only even values of momentum, the states of equation (5.21) must be rewritten in the form

|wn) = \/— > 6(2p1+2p2—Q) wa(2p1—-Q/2) Azp1 ng [0), (5.25)

P1,P2

where the total momentum @ is even; the hadronic wave function wy, is given by equation
(5.22), and k is the solution to equation (5.17), where the quantum number can take the

values m = 1,2,3,.... The hadronic momentum k is such that k ~ 2ReK, where K is the



CHAPTER 5. A QUARK MODEL OF THE N UCLEUS ‘ 75

Bethe momentum in the quark model. The enérgy of the hadronic state |wp) is k2.

We have thus modified the two-boson Bethe ansatz, equation (5.21), by restricting the
sum to only half of the terms. If this were not done, as we calculated observables in the next
chapter we would find that all of them would have a domain with twice the number of points
than the corresponding observables in the quark model. The choice of only eveﬁ values for
the momenta, has lead to a Kronecker delta function in the state of equation (5.25), which
is consistent with equation (4.105).

Even though we started with a system of bosons with attractive intéraction, by removing
a subset of the energy spectrum we have ended up with the energy spectrum of a system
with a repulsive effective interaction. To see why the spectrum corresponds to a repulsive

potential, let us notice that in equation (5.17) the solution for a given m is in the interval
1
m~-§<k<m; (5.26)
thus, the m’th energy level is within the interval
1 2
(m - 5) < E, <m’. (6.27)

But a system of two non-interacting bosons has energy levels

—1)?
BO = -(173—4-——)—-, (m=1,2..) (5.28)
which is smaller than E,, for any m = 1,2,.... This means that the effective interaction

among nucleons is repulsive. We can trace back the physical origin of the repulsive interaction
to the fermionic nature of the constituent quarks, which prevents overlapping of the two
nucleons thereby excluding the state with m = 0. This repulsive interaction prevents the
nucleons from binding, which was the reason to introduce a finite volume in our model, in

order to confine the nucleons to the nuclear volume.

5.2.2 Internal structure of the nucleon

The internal structure of the nucleon will be calculated by solving the same Hamiltonian of

the quark model, but for only a system of two quarks bound into a cluster. The one-cluster
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system has been investigated in section 4.4.1; the states have the form

W)= 3 8(p1+p2—Q) w(p1 - Q/2) al, b1, 10), (5.29)

P1,P2 .

where the wave function is given by

' g
= —_— 5.30
w(p) = o7 (5.30)
with a normalization constant 3; here « is the solution of the equation
' 1 ira
= ——coth™ { — ). .
a —co ( 7 ) (5.31)

As was discussed earlier, a is such that o = Im(K), where K is the Bethe momentum in the
quark model. The state of the nucleon |w), is an eigenstate of the quark Hamiltonian with
energy —2a’

H, |w) = —20 |w). ) (5.32)

5.2.3 Impulse approximation

Having developed a hadron theory of the nucleus, and with the internal structure of the
nucleon known, an impulse approximation can be introduced. First let us look at the energy
of the system; in this approximation it is obtained simply as the sum of the energy of the
hadronic states, plus the internal energy of the hadrons. For the deuteron-like system the
energy of the hadronic states is given by k2, and the binding energy of each nucleon is —2a?;
therefore, the total energy, in units of b, is

Epa = (%‘g)z (¥ - 4a?). (5.33)

Since a ~ Im(K) and k = 2Re(K), the energy Ej4 is a good approximation to the quark
Hamiltonian energy spectrum, equation (5.16). In fact, in figure 5-3 the results of the impulse
approximation cannot be told apart from the quark model spectrum.

Other observables are calculated by folding the quark structure of the hadron with the
hadron structure of the nuclear system, as was explained in chapter 3. The impulse approx-

imation simplifies the dynamical problem considerably. The quark Hamiltonian has to be
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solved only for the system of quarks inside the hadron; this gives the internal structure of the
hadron: binding energy, form factor, momentum distribution, etc. According to this scheme
quark degrees of freedom do not play any significant role in nuclear physics; once the intrinsic
properties of the nucleons are known from experiments, the dynamical behavior of the system
is determined by the effective Hamiltonian. '

In spite of the success of the impulse approximation in reproducing the energy spectrum,
we notVice that the eigenstates in the quark model, equation (5.11), are more complex than the
states in the impulse approximation, equation (5.25); therefore, we expect this approximation
to fail in the calculation of some other observables. One of the objectives of this dissertation is

to look for those observables and to test within which domain the failure becomes significant.

5.2.4 Cluster approximation

The nuclear states are much simpler in the hadron than in the quark picture. We may
argue that the apparent simplicity of the state is due to the fact that there is an internal
part of the wave function, equation (5.29), that is implicitly included in the calculations.
In the quark model, the sum over the symmetric group in the wave function and the anti-
commutation rules of quark operators ensure that the function has the symmetries required
by the identity of quarks. Although the internal wave function of the nucleons is implicitly
included in the impulse approximation, quarks belonging to different nucleons are treated as
non-identical particles, because they are treated as independent. The impulse approximation
does not incorporate exchange of quarks, which one might expect to be a significant source
“of corrections.

Quark exchange can be included in the hadron picture if the elementary boson operators
Az in the hadronic state, equation (5.21), are replaced by quasi-boson operators defined using

equation (5.29)
ﬁi = Y b(pr+p2—p) w(p1—p/2) allbiz; (5.34)

P12
the operator A;{ creates a nucleon with momentum p; the algebra of the operators Ai and
fip is no longer given by simple commutation rules, which means that the nucleons are not

considered as elementary anymore, but as quasiparticles. Replacing the bosonic operators by
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fll in e(iua,tion (5.21) gives
1 .
Q) = /2 Z Z Z 6(p1+p2—Q) 6(p3+pa—p1) 6(ps+ps—p2) (5.35)
P1,P2 P3,P4 P5,P6

X wi(p1 — Q/2) w(ps — p1/2) w(ps — p2/2) ‘7’23 bzéagsbiﬁ [0); (5.36)

evaluation of the sums over p; and ps, and relabeling of the other indices lead to

1
ok = == Y 6(pi+patpstpa—Q) wa(p+pa-Q/2) (5.37)
(pi)£=1...4
P1—p D2—P
xw (B2 o (252 of bl od, 10, (5.38)
and in the zero-momentum frame the state has the form
1
10" = —= S Qh(r1,ra,7s,ma) af af, 5185, | 0), (5.39)
Vi L5
Tit€)liz=1...4
where
€= —”3%99——2-, (5.40)

and the wave function QP is given by

Qh(’l'l,Tg,’f':;,'I“l) = -\/5 5('}"1 +’f*2+’l‘3+7‘4) wh(rl +7’3) W (7’1;1’3) w (T2~2—T4> : (541)

The states of the nucleus now look more like the states in the quark model. However, the
argument of the function w in equation (5.34) must be an integer. This implies that some of
the terms of the sums in the state | 2"*) do not give any contribution; namely the terms for
which ro — 74 and r; — 73 are not even integers, which amounts to half of the points in the
sums. This is the same phenomenon that was found as we constructed the hadronic states
and which had to be imposed in order to get the same number of points in the domain of the
observables. However, here the restriction has entered naturally into the picture, because we
have aknowledged that the hadronic operators Al are not simple bosonic ones, by replacing
them by Az.

The wave function has the simple product form of equation (1.1). It is not antisymmetric
under the exchange of any two arguments; however, since the state is written in terms of

quark operators, the result is a state with the correct symmetries imposed by the exclusion
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principle. The cluster wave function Qj, in fact leads to a state which is a color singlet. To
check that, first notice that since w is an even function, the cluster function has the following

symmetries

QP (ry,79,73,74) = QP (ra, 7o, 71,74) = QP (71,74, 73,72); (5.42)
therefore, Q" is invariant under the action of the symmetrizers S4(1,3) and S4(2,4)
Qh(Tl,Tz,Tg,’h}) = S4(1,3) S4(2,4) Qh(rl,rz,rg,m). (5.43)
The antisymmetrized wave function, equation (2.54), can then be written as
x(P1, 72,73, 7a) = Ag(1,2) Aa(3,4) QP(ry,7a,73,74) = V(1,2 ] 3,4) QF(r1,79,73,74), (5.44)
where Y (1,2 | 3,4) is the Young operator
Y(1,2]3,4) = As(1,2) Ag(3,4) Sa(1,3) S4(2,4); (5.45)
therefore, the function x has the form

X(T"l,?’z [ T3,T4), (546)

which is the form required for a color singlet (theorem 1, chapter 2).

5.3 Summary

In the quark model the states of the deuteron are known; they have been written in momentum
space, which will simplify the evaluation of the observables of interest in scattering theory.
The energy spectrum is well reproduced by an effective hadron theory in which the deuteron
is regarded as a system of two elementary nucleons, with an effective repulsive interaction.
The effective Hamiltonian is also of the Bethe ansatz type, but only some of its eigenstates are
allowed due to the underlying substructure of nucleons. The binding energy of the nucleons
is obtained by solving the quark Hamiltonian for one nucleon only.

An impulse approximation has been introduced, assuming that the only role of quark
dynamics in nuclear physics is fixing the internal structure of the nucleon; this substructure

is assumed to be an intrinsic property of nucleons which is not affected by the presence of
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other nucleons. In the cluster approximation the states of the deuteron in the effective theory
are modified by replacing the elementary nucleon operators by the operator that creates a
cluster of quarks. This approximation is expected to be an improvemeﬁt to the impulse ap-
proximation because it introduces terms due to exchange of quarks among nucleons; however,
there is another important source of error in both approximations: the exact states in the
quark model cannot be factored into cluster-cluster and internal parts. In chapter 7 we will
see that the effect of the wave function not being separable is more important that the effect
of quark antisymmetrization, and thus the impulse approximation is as good as the cluster

approximation (it actually gives better results, as we will see in chapter 7).



‘Chapter 6 |

Computation of observables

The states of the deuteron, in the quark model and in the two approximations are now used
to calculate dynamical functions. These are new calculations; Bethe ansatz models have been
used in the past to calculate dynamical functions of the nucleus [43,44], but the results found
in the literature are for the bosonic Bethe ansatz, and only in the case of elastic scattering.
The major difficulty in doing such calculations in configuration space, arises from the rapidly
increasing number of integrals that have to be evaluated (increasing as n!?). In the simple case
of only two clusters, those calculations would be cumbersome, but could still be reasonably
done; instead, we have decided to use momentum representation because in that case the
space does not have to be separated into 4! regions; in the end, we are also left with (4!)2
terms, but they can be written in a compact and elegant algebraic form that makes it easy
to develop an algorithm to obtain the results. We expect that the procedure we have used
would be easier to generalize than the configuration space formulation.

In chapters 2 and 3 some dynamical functions were introduced, which can be measured in
scattering experiments and could be used to look for quark effects in the nuclear target. Our
goal in this chapter is to derive analytic expressions for those functions, both in the quark
model and in the approximations based on the effective hadron theory. The observables of
interest are: the quark-momentum distribution, the quark-correlation functions, the elastic
form factor, and the Coulomb sum rule. The analytic expressions obtained in this chapter

will be used in chapter 7 as a tool to look for quark effects in the nucleus, other than those

81
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already present in the nucleon. ’

The impulse approximation will be studied first, because of the sirhp]icity of it>s calcula-
~ tions, which are a good introduction to the more general approaches of the cluster approxi-
matibn and quark model. The cluster appioximation constitutes also a more rigorous way of
checking the results of the impulse approximation, which were obtained with some physical
intuition (section 3.3); the results from the impulse approximation must agree with the direct
terms in the cluster approximation.

In both the cluster approximation and the quark model, the state of the system in terms
of quarks is known and the calculations are done in a similar way, using the same diagrams
for each observable. What is different is the analytic expressions of the diagrams obtained

with the quark model of the cluster approximation.

6.1 The impulse approximation

In the impulse approximation, the calculation of observables is done at two independent levels.
At the nuclear level, the effective hadron theory is used to calculate nucleon momentum
distribution, ny, elastic form factor, f, and nucleon-nucleon correlation function, c;. The
quark Hamiltonian is used only to study the system of quarks that form a nucleon. The
quark state of the nucleon is used to obtain its elastic form factor, f, quark-momentum
distribution, n, and quark-quark correlation function, d. The two sets of results are then

combined to calculate the quark functions of the nucleus, as explained in chapter 3.

6.1.1 Quark structure of the nucleon

The intrinsic quark functions of the nucleon can be calculated using the quark state of the
nucleon, equation (5.29)
@)= 3> 8(pr+p2-Q) w(pr-Q/2) of,b], |0); (6.1)
P1,P2

the wave function w(p) is an even function and is given by equation (5.30)

w(p) = (6.2)

p2+a2'
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The quafk observables of the nucleon are derived from the general results found in sections 2.4
and 2.5, for systems of fermions with two colors; the number of particles n, and the number
of those with color a, m, are 2 and 1 respectively. Both functions % (p;,p2) and x(p1,p2)
should replaced by
§(p1+p2—Q) w(pr—-Q/2).
We first have to normalize the state; from equation (2.84)

wlw) = > 8(p1+p—Q) W*(11~Q/2)

P1,p2

> @ (p); (6-3)

p .
in the last step we used the fact that @ must be an even number (section 4.4.1). With the

i

form of the wave function, equation (6.2), we find that in order to normalize the state, 8
must be chosen to be

~1/2
g = {Z (»* + 02)‘2} = [a(&ia)] 72, (6.4)

P

where the function £; is defined in appendix A, and its analytic form is given there.

The quark momentum distribution n(p) is obtained from equation (2.83)
1
np) = 3 8p+r—Q) W (p-Q/2) + v (- Q/2)]
P
= wi(p); (6.5)

the even nature of the function w and the number @ were used. With the functional form of

w, we have

n(p) = [ b ]2 , (p integer). (6.6)

p2 + a?
Likewise, the elastic form factor is obtained from equation (2.88)

fle) = %Z b(pr1+p2—-Q) w(p1—Q/2) [w(p1—Q/2+¢/2) + w(p1—Q/2~q/2)]

P1,p2

> w(p) w(pt+a/2); (6.7)

r

it

the momentum transfer g has to be an even number because the argument of w must be an

integer. Using the algebraic form of w, the sum over p becomes a function €4 (appendix A)

f(q) = B* €a(q/2 + i, +ia). (6.8)
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If ¢ = 0, it is clear from equation (6.4) that f(0) = 1; if ¢ # 0, using proposition 19 from
appendix A, and equation (5.18) we obtain the result

_ 32w2B%/cl,
flg) = TPt (daR’

The two quarks inside the nucleon have different color; hence, the quark-quark correlation

(¢ = £2,44,46,...). (6.9)

function of the nucleon, d(g) is derived from the expression for the different-color correlation

function, equation (2.98)

dlg) = 6(p1t+p2—Q) w(p1-Q/2) w(p1—Q/2+9),
= > w(p)w(p+q); (6.10)

. P
which is identical to f(2¢), equation (6.7). This equality is a consequence of having only two

quarks inside the nuclepn. In any system of two particles with the same mass, the probability

of finding the two particles at a distance z from each other (Py(z)), equals the probability of

finding one particle at a distance z/2 from the center of mass (p(z/2)). Since d(g) and f(q)

are the Fourier transforms of Py(z) and p(z) respectively, it follows that d(g) = f(2¢).
Using the result for f(g), we can write the quark-quark correlation function of the nucleon

= 292

o) = -2,

The isolated nucleon is obtained if we take the limit I — oo. In that limit, as we saw in

(¢= +1,42,43,...). (6.11)

the section on parameters and units in chapter 5, the solution of equation (5.18) is.
el
o= —, 6.12
yy (6.12)
The momentum transfer 2rg/L becomes continuous and the elastic form factor, equation
(6.7), becomes

4c?
flg) = Z i

the Fourier transform of this function gives the density of the nucleon:

(¢ Real) (6.13)

p(z) = —ce®* 2l (¢ <0) (6.14)

the integral of the density from —oo to oo has been normalized to 1. The integral from 1/2¢
to —1/2c is approximately 0.63; therefore, the parameter R = —1/c defined in chapter 5,

gives an estimate of the diameter of the isolated nucleon.



CHAPTER 6. COMPUTATION OF OBSERVABLES ) 85

6.1.2 Nuclear structure in the effective hadron theory

In the effective hadron theory the states of the deuteron are given by equation (5.25)

|wn) = \/Q Y 82p1+2p-Q) wi(p1—Q/2) ALIAT |0); (6.15)

P1,P2

the total momentum @ is even. The operators Al are elementary boson operators. The wave
function wy(p) has been given in chapter 5, equation (5.22); in order to simplify the algebra,
we will use only the even part of wy(p), which leads to the same state |wp); thus, we have

Bh

m) (6.16)

wp(p) =

where f; is an arbitrary constant. The value of the constant is chosen such that the norm of

the state is one

(wplwn) = Z 6(2m+2p2—Q) 6(2p3+2ps—Q)
P1.,P2,P3,P4
Xwn(2p2— Q/2) wh(203—Q/2) (0] Agp, Anpy AL, AL 10),
_ Y ui-0)2) (6.17)
P

As we mentioned in chapter 5, ¢}/2 is an integer; and for a given quantum number m the

allowed values of /2 are those such that

—622 (mod 2) =m (mod 2); (6.18)

if the rational number ¢ is defined as in equation (5.12)

d2
ez ™ (mod2) (6.19)
2
the norm becomes
(wh|wp) = Z wi(2p—2¢), (6.20)
P

and from equation (6.16) the normalization constant has the form

Br = 4[€a(e + K) 72 (6.21)
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The number ¢ vanishes if m is even, and € = 1/2 otherwise; the real momentum K has been
defined as

K (6.22)

1l
M_I o

To calculate the hadron functions of the deuteron, we will use the definitions in chapter 2,
dropping the color indices « in the operators A and At From equation (2.36), the nucleon-

momentum distribution is

m(p) = 3lonl Af4p lun)
= :11‘ > 8(2p1+2p2—Q) 6(2ps+2ps— Q) wa(2p2—Q/2),
P1,P2:P3,P4
xwh(2ps—Q/2) (0] Asp, Asp Al 4aL 41 0). (6.23)

The argument p must then be even; it is easy to simplify the expression above, leading to
the result V
np(p) = wi(p—Q/2), (p even). (6.24)

The elastic form factor is calculated as a matrix element of the density operator pg,
equation (2.28). The final state should be the same initial one, but with an overall increase
of ¢ in the total momentum. However, since the total momentum of |w,) must satisfy the
relation

Q@ (mod 4) = 2, (6.25)

the momentum transfer g has to be a multiple of 4. From equation (2.28) we have

fu(a) = 5ln(@+2)] XA 4 l0n(Q)
P
= % > 6(2p1+2p2—Q—p) 6(2p3+2ps— Q) wr(2p2—Q/2—p) wh(2p3—Q/2),
P1,P2,P3,P4
_ Tl T4l
X (OE A2P1A2P2A2p3A2p4+p [0> + (O] AZm A2P2A2p3+p 2p4+p 10> (6-26)

where p = ¢/4. After some algebra, f, can be written as

fu(a) =Y wi(2p—2¢€) wp(2p+g/2—2e); (6.27)
P
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using the functional form of wy,, fi becomes a function &4

fu(g) = ( )&(q/HeiK et K). | (6.28)

If ¢ = 0, according to the definition of Sy, fh(O) = 1. At momentum transfer different from
zero, proposition 19 leads to the following result -

falg) = ( ) 3251(K+6)/K

B OTSVRRE (¢ = +4,48,+12,..)). (6.29)

The nucleon-nucleon correlation function is defined in terms of the two-particle correlation

operator, equation (2.34)
1
= 5ol ZAT AL A A |wn). (6.30)

Instead of going through some algebra, we use the result discussed in the previous section
for two-particle systems. Since the deuteron is made up of only two nucleons, the nucleon-
nucleon correlation function c,(gq) must be equal to the elastic form factor f,, evaluated at

2q. Thus, the result is

en(g) = (-@-&)2 8(K +¢)/K

1) g (ok)e (¢ = £2,+4,46,...). (6.31)

6.1.3 Quark structure of the deuteron in the impulse approximation

Now that we know the structure of the deuteron in terms of nucleons, and the quark structure
of a nucleon, we can calculate the quark functions of the deuteron following the approach
outlined in section 3.3. The results from that section will be valid here if the integrals
over momenta are replaced by discrete sums, and three-dimensional vectors are made one-
dimensional.

From equation (3.38) we have

Nia(p) =) n(p—q/2) nn(q). (6.32)

The function ny, is different from zero only if its argument is an even number; therefore, the

sum over g can be restricted to even values only. Using the distributions n(p) and nx(p),
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equations (6;6) and (6.24), we obtain

Nra(p) =) w*(q) w§(2p~2q-Q/2), : (6.33)

g

where @ is the total momentum of the nucleus. The momentum transfer in the zero-
momentum frame is given by » = (p — Q/4); since @ is constrained by equation (6.25),
r is either an integer, or an integer plus 1/2, depending on the value of ¢; therefore, in the
zero-momentum frame the quark-momentum density is

Nia(r) =) w?(q) wi(2r - 29), (6.34)

g

where the domain of Ny is
r=p—c¢ (pinteger). (6.35)

The quark momentum distribution in the impulse approximation is then the convolution
of the distribution of quarks inside the hadron and the distributioﬁ of hadrons inside the
nucleus. This simple result was derived without any knowledge of the state of the nucleus
in terms of quarks. Using the algebraic form of the functions w and wy, equations (6.2) and
(6.16), the quark momentum distribution becomes

2

Npa(r)= B2 87 Y (0% + o®)72 |(2r—2p)* - ¥] (6.36)

P
if a factor of 2 is taken out of the last parenthesis, the sum takes the form of a function £g

(appendix A)

Nia(r) = 82 (%’1)2 to(ia, 7 + K); (6.37)

with K = k/2. It can be verified that the quark momentum distribution is normalized to one

> Nua(r) = p° (%)2 S0 +0?)7? |(g-e-p)* - k2]

r+,€ b9

= p (—%)2&(ﬂa> Eale + K) (6.38)
= 1. . (6'39)

2

I

According to equation (3.40), the elastic form factor in the impulse approximation is

simply the product
Fra(q) = f(q) ful9); (6.40)
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since the domain of f;, includes only multiples of 4, the elastic form factor F74 is defined only
for multiples of 4 also. Using the form factors f and fj calculated earlier, equation (6.40)

becomes

ﬁﬁh) 21072 ¢, (K + €) 1 (q = +4,48,4+12,...). (6.41)

Frale) = ( 4 cLK (g% + 16a%)(¢ — 16k2)’
In the impulse approximation the same-color correlation function is calculated as follows.
Two quarks of the same color inside the nucleus can only come from different nucleons;
therefore, the probability of finding two quarks of the same color at a distance z from each

other is given by equation (3.43

)
L/2
(z) = JL/2 dy dz p(y) p(z) pa(z+y-2), (6.42)

where p(y) is the quark density of the nucleon, and pp(z) is the probability of finding the two
nucleons in the deuteron at a distance z from each other. Both functions are periodic, with
period L. The same—color correlation function is simply the Fourier transform of P,, which

has been calculated in section 3.3.3, and the result is

Cra(a) = £2(a) eala), (= 0,+2,%4,...). (6.43)

The different-color quark correlation function is the Fourier transform of the probability
of finding two quarks, of different color, at a distance z of each other. If two quarks of
different color are randomly picked, there are equal chances that they come either from the
same nucleon or from different ones; then the different-color correlation function is obtained

from (3.49), giving an equal weight to both terms in the sum

Drala) = 5 [da) + 1(0) en(a)] (6.4

here d is the quark-quark correlation function of the nucleon, and f its elastic form factor;
¢p, is the nucleon-nucleon correlation function of the deuteron.
The Coulomb sum rule was calculated in chapter 3, using also the closure approximation.

The result given there, equation (3.57), was

_ f2(q) g2 2 _
Riale) = ==+ (@] = F(D) file)  (a=0,£2,%4,..). (6.45)

At zero momentum transfer, cp, fi and f are normalized to 1, and R;4 becomes zero. At

large momentum transfer, the form factor of the nucleon, goes to zero and so does Ry 4.
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6.2 The cluster approximation

In the cluster approximation, the quark fﬁnctions that we study can all be calculated as
rﬁatrix elements or expectation values of the density operators defined in chapter 2. The
results will be separated into a direct term plus an exchange contribution which arises from
the antisymmetrization under exchange of quarks among nucleons.

The computation of observables can be made in an elegant way by introducing cluster
diagrams [8,9]; diagram rules will be derived in the next section and two standard diagfams
will be calculated. Cluster diagrams are not a perturbative approach; there is a finite number

of them and they can be calculated analytically.

6.2.1 Cluster diagrams

The states of the duteron, in the cluster approximation were obtained in page 78; it is

convenient to rewrite them in the form

Ty T2 T3 TG

lﬂ">=% > Qh(r1,72,73,74) af, b, al 81, 10), (6.46)

(rite)i=1,2,3,4

with the wave function

Qh(?’l,’l’z,’l"g,T4) =2 8(r1+ro+r3+7rs) wa(ri+re) w (TI;TZ) w <T3;T4> ; (6.47)

the numbers r; are integers, if the quantum number m is even (e = 0), and integers plus 1/2
if m is odd (e = 1/2). The functions w and wy, are given by equations (6.2) and (6.16); since

they are both even functions, Q" has the following properties

Qh(rl,rz,r;g,m) = Qh(Tz,T‘l,Tg,T4), (6.48)
Qh(ﬁ,?’z,?‘s,m) = Qh(Tl,Tz,T«;,?”a), (6-49)
Qh(’l‘l,'f‘z,’f‘3,’f‘4) = Qh(r3,r4,rl,r2), (6.50)
Qh("’1,7'2,?°3,7’4) = Qh(—rl,—rz,—"'a,-h)- (6-51)

In chapter 2 we derived general expressions for the elastic form factor and correlation

functions of a system of particles of two colors. In the case of the deuteron, the results are
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all sums of terms of the form
Dh((ll,az,(ls,%) = Z Qh(T1,T2,7'3,7’4) X"(m—al,r2~a2,r3—a3,r4—d4), (6-52)

(rite)i=1,23,4

where x" is the wave function antisymmetrized under exchange of quarks of the same color

x"(r1,72,73,74) = Ag(1,3) A(2,4) QP(r1,72,73,74)

1
= 32 {Qh(rlﬂ'z,?’a,’f«;) + Qh(rs,uﬂ“l}?’z) - Qh(ra,Tz,Tl,Tz;) - Qh(”°1a"’4,7’3,"'2)} (6.53)

From the symmetry property (6.50), the sum inside the square brackets reduces to only two

terms and D" can be written in the form
1
Dh(a'h az, as, CL4) = '2' [Dg(al , 32,03, a’4) + D:(a’l , 22,03, (14)} ) (654)

where the direct diagram ’Dc’} is defined as

()
Dg(al,az,ag,w) = (6.55)
=10

= > QP (1,79, 73,74) QP(r1—a1, 72— az, 3~ a3, 4 —as);

(rite)i=1.2,3,4

the exzchange diagram is !

6@6
D*(ay,a9,03,a4) = (6.56)

= - Z Qh('f’l,7'2,7'3,7‘4) Qh("‘l"alﬂ"s—*%,7‘2~az,7’4‘(13)~

(rite€)i=1,2,3,4
The relation between each term and its corresponding diagram should be clear. The four

small circles (quarks) on the left, correspond to the arguments of the first function Q" in order

IThe symmetry property (6.49) has been used to make the diagram look simpler.
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from top to bottom; the quarks on the right fepresent the arguments of the second function
QF. Inside each big circle (nucleon) there is onerqua.rk of each color; and every quark on
the left is linked to one, and only one quark of the same color, on the right. Each segment
connecting two quarks is assigned one of the indices a; in the following order: a; goes with
the first grey quark on the left, ap With the first black quark on the left, az with the second
grey quark and a4 with the second black one. A value ; is given‘ to each segment on the left
of the cross, and 7; — a; to the right of the index a;. Sums over the indices r; are introduced,

with r; going through the values
ri=0—e4l—642—c,... (6.57)

and the diagram is given the sign of (~1)!, where [ is the number of points at which two
segments of the same color cross each other. V

The symmetry properties (6.48) and (6.49) imply that the order of the quarks in each
nucleon can be changed. Equation (6.50) leads to invariance under exchange of nucleons on
the same side (left or right). The domain of the wave function Q* are those points 7; in the
set of equation (6.57); and if the sum of the four arguments r; is not zero, QP vanishes; as a
consequence, the indices a; of a diagram must be integers and if their sum is not zero, the
diagram is zero

ai, ay, as, a4, integers (6.58)
D?(al,ag,ag,tu) = §(a; +az+az+aq) D?(al,az,a;;,a‘;)‘ (6.59)

Equation (6.51) leads to invariance of the diagrams under reflection from left to right;

also
D;—‘(al,az,ag,w) = D;—‘(—al,—az,—ag,—a4). (6.60)
We will now find an analytic form for the diagrams. If we replace Q" in terms of equation

(6.47), we have

Dj(a1,a2,03,a4) = 2 Z §(r1+r2+7r3+7s) wp(r1+72) Wa(ri+r2—a1—as)
(rite)i=1..4

T1—T2 T1—T2— A1+0a2 r3— T4 T3—T4—a3+0aq \
Xw( 5 )w( 5 )w( 5 )w( 5 ), (6.61)
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Py — 73 is always an integer, but if it is not even then the function w((ry — r4)/2) will vanish;
hence we consider only 7y — r3 even and p; is thus an ihteger; but if 74 — 73 is even then the
parity of rg + r3 is the same as that of 2¢ and therefore (73 + r3)/2 gives an integer (ps) plus

€. For v, and 73 a similar argument holds. Therefore, the rational dummy indices can be

replaced by the indices

T — Ty Ty — T4

e = . 2
D1 2 ’ P2 2 ) (66)
p3+EET1;T2, p4+ezr3;“, (6.63)

which are all integers. With this change of indices and by evaluating the sum over p4 via the

delta function, we can write the direct diagram in the form

Df(a1,02,a3,a0) = 2 Y wh(2ps+2€) wa(2ps+2e—a1—az) w(ps)
P1,P2,P3

X w <P1+

az — a3

as —a
) w(p2) w (P2+ 5 3) : (6.64)
With the algebraic form of Q") the exchange diagram becomes

Di‘(al, az,as,aq) = —2 Z §(r1+ra+r3+rs) wp(ri+rs) (6.65)
(rite€)i=1..4

T1—7T2 r1—7r3— ai1+as 73— T4 To—T4— a2+ 04
X wp(ri+r3—a1—az)w 3 wl iy 5 w 5 .

The only points that contribute to the sum are those for which the arguments of the four

functions w are integers; this implies that the numbers p;, defined as

P +rs—az+a 147

p = — 42 ALY P2 = 12 2 te (6.66)
M +rg—a1+a

p3 = ! 32 ! 3+6> p4ET1+6$

are all integers; moreover, for every point (71,73, 73, 74) there is one and only one correspond-
ing point (p1,pa,p3,P4), and the sums can be replaced by

Dia1,a2,03,04) = =2 Y 8(p1+p2+ps—pa—2e—az—ar) wy(2pa—2¢)  (6.67)
P1,P2,P3,P4

X wh(2p3—2€—2a1) w(pa —pa) w(ps—pa) w(pr — p3) w(p1 —p2+az+az);
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in the argument of the last function w we made use of the fact that the sum of a; is zero, to
get a simpler expression. The sum over p4 can be evaluated with the delta function, giving
the result

Dl(a1,a2,03,04) = =2 D wh(2p2—2€) wh(2ps —26—2a1) - (6.68)
P1,P2,P3

X w(p1+pz—2e+az—ar) w(pr+p2—2e+az—a1)) w(pr — ps) w(pr—p2+az+as),

and if the functions w and wy, are replaced by their functional form, equations (6.16) and

(6.2), we have

2
Dl = -2 (é%@) > {(m—e)2 - Kz]ml [(p3~—e~a1)2 - Kzrl [(p1+pa~2e—-c1)2 + az]~
P1,P2,P3

-1 -1
x [(mtpa-2e—cr)? + 02| [(ps=p1)? + 0] [(p2-pr-ca)’ + 0| (6.69)
the integers ¢; and c; have been defined as
ci=a;—az ; €3 =ay -+ as. (6.70)

Finally, we will write the sums in terms of functions £

) 2
D:‘(al,az,ag,%) = =2 (ﬁfh) Z&; (e+a1+ K , 2¢e—p+eitia, ptia)
P
xég (e K , 2¢—p+eitia, ptegtia). (6.71)

The functions £ are defined analytically in appendix A; but there is still one series that must

be summed. The sum is done in appendix B and the final result is given there.

6.2.2 Direct terms in the cluster approximation

We will first calculate the direct terms of the quark functions, and show that all of them
give the same results as the impulse approximation. We first have to normalize the states;

according to equation (2.84), the direct part of the norm is
1
(Q*2")g = 5D5(0,0,0,0); (6.72)
and from the general expression for the direct diagram, we can then write the norm as

QMM =3 wi2ps+26) Y WP(p1) Y WP (p2) = 1; (6.73)

p3 "

1
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the result of 1 has been obtained because the hadronic and quark states have already been
normalized.
The elastic form factor is obtained from equation (2.88); there are four direct terms which

~ lead to the same diagram

F}(q) == %DS(—34/4,q/4,q/4, a/4); (6.74)

since the arguments of the diagram must be integers, the momentum transfer must be a
multiple of four. We have

Fi@)= D wh(2ps+2€) wn(2ps+2e—2p) w(pr) w(p2) w(pa+2p);  (6.75)

P1,P2,P3
here p = ¢/4 is an integer. Since the state has been normalized, the sum over p; is equal to
one and we have
Flg) = Z wr(2p1 +2¢€) wp(2p; +2¢—2p) Z w(p2) w(pz2+2p). (6.76)
P P2

Comparing with equation (6.7) we see that the sum over p; gives the elastic form factor of
the nucleon, f(g). The sum over p; is fr(g) according to equation (6.29); therefore this result
is exactly the same as the impulse approximation result.

The direct term of the same—color correlation is obtained from equation (2.99)

1
CQ(Q) = _2':D2(_q,0a%0)) (677)

= ) wa(2ps+2¢€) wa(2ps+2e+q) w(p1) w(p1+4/2) w(pz) w(p2—g/2).

The sums over p; and p; are both equal to the elastic form factor of the nucleon, f(g), and
the sum over p3 is the hadron correlation function of the nucleus in the hadron picture, ¢;(g);
therefore, the direct term of the same—color correlation function in the cluster approximation

is identical to the impulse approximation result

Cé(q) = Cralq)- (6.78)

The direct term of the different—color correlation function is given by equation (2.98)

1
DS(Q) = Z[Dg(~Q7Q:O>O)‘{‘Dg(“Q)O)O;q)}7
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= 2 3 [whepet2e) () wlpr) wlp2 )
+  wh(2ps+2¢) wa(2p3+2e+q) w(p1) w(p1+4/2) w(p2) w(p2—g/2)], (6.79)

which is identical to the impulse approximation result

Dj(g) = D1a(g)- (6.80)

The momentum distribution does not have the same general form as the elastic form factor
and correlation functions, but it can also be calculated in terms of diagrams. From equation

(2.83); we obtain four direct diagrams for NJ}(r), which are all topologically equivalent; thus

(D
h 1 h 2
Ni(r) =5 =5 Y [0rrarard)], (6.81)

(rite)i=2,3.4

where 7 is in the same domain as in equation (6.35); substituting equation (6.47), N} becomes

Do) o

N:l‘(r) = Z 6(r+ra+ra+rs) wi(r3+r4) w? (T.i;:‘i) w? <T.'_:2.7'._2_) : (6.82)
(rit+e€)iz2,3.4

since 7,79,73 and r4 are all integers minus ¢, then r3 — 74 and r — ry are integers; moreover,
we can assume both integers to be even because the functions w(™5™) and w(™52) would
be zero otherwise; therefore, we can relabel (r3 — 74)/2 as the integer dummy index p,, and
(r—72)/2 as the integer —p3. Also, if 73 —ry is an even integer then r3 4 r4 is an even integer
plus 2¢, and (r3 + 74)/2 can be replaced by p; + € with p; being an integer dummy index.
These changes lead to

Né‘(r) = Z §(r+p1—pa+e) wi(2p1+2¢) wi(ps) wi(pa); (6.83)

P1,P2,P3
the sum over p; is simply the norm of the state of the nucleon, which has been normalized

to 1; the sum over p; can be evaluated with the delta function and we are left with
NMr) = sz(p) wi(2r — 2p), (6.84)
P

which is exactly the same result obtained with the impulse approximation, equation (6.34).



CHAPTER 6. COMPUTATION OF OBSERVABLES ' 97

6.2.3 Exchange terms in the cluster approximation
The exchange term of the norm, according to equation (2.84), is

1
(Qkhahy, = 52)3(0,0,0,0),

826\
_< . ) > €2 (e K, 2e—p+tia, ptia). (6.85)
p

The result is not 1, as was the case for the direct part. Therefore, the observables that we
want to calculate wil be obtained by adding the direct term, which is impulse approximation

result, plus the exchange term, and the total result should be divided by the norm:
Qr1aky = 1+ (P Q.. (6.86)

From equations (2.88), (2.98) and (2.99), the exchange terms of the elastic form factor

and correlation functions can be written as the following diagrams

FiMg) = %PQ(—3Q/4,q/4,q/4,q/4), (6.87)
Cclg) = %D?(O,q,—q;o), (6.88)
Dig) = -;—D?(—q,qﬁ,O); (6.89)

notice that the different-color correlation function, whose direct term had two distinct di-
agrams, has only one topologically distinct exchange diagram. The analytical form of the
exchange terms of the functions are obtained from the analytical form for the exchange dia-
gram, given in appendix B.

To calculate the exchange term of the momentum distribution, we use the diagram

OREW

1 1
N:(r) =3 = —= Z Qh(r,rz,rg,m) Qh(T,T’3,7’2,T4); (6.90)

. 2 (rite€)i=2,3,4
O

substitution of the wave function QF gives

1
Nir) = -2 Z QM (v, 7,73, 74) QP (7,73, 79,74); (6.91)

(rite€)iz2,3,4



CHAPTER 6. COMPUTATION OF OBSERVABLES : 98
from equation (6.47) we have

Nry=— 3 b(r+motratry) (6.92)
(rit+e€)iz2.3,4

ro—1 Ta—1 P—7 P—1
xwh(rz+r4)wh(r3+r4)w< 22 4) w( 32 4) w( 3 3) w( 5 2);

since 7y — 7, 73 — 7 and r4 — r are all integers, and the term inside the sum becomes zero if

either (ry — 7)/2, (r3 — 7)/2 or (r4 — 7)/2 are not integers, then we can relabel (v, — 7)/2,
(rs —7)/2 and (r4 — r)/2 as the integer dummy indices pa, ps and p; respectively

NMr)=— Y 68(2r+pi+p2+ps)

P1,P2,pP3

X Wh(2p1+2p2+2r) wp(2p1 +2p3+27) w(p2) w(ps) w(pyi—p2) w(p1—ps3); (6.93)

evaluation of the sum over p;, by means of the delta function,and the use of the algebraic

form of the functions w and wy, lead to

NEr) = BB (3 + ) B+ o¥) ! [ttt 402 (6.94)

D2,P3

« wtaprran + o] [t -] [t -]

the sums can be arranged so that the sum over p;3 is evaluated first and the terms which do
not depend on pz are taken out of the sum over ps; this gives a sum over pz that can be

written as a function &g

Nh _ ﬁﬂhz +a2)1[p+7,) Kz]

x &g (iza,riK,2r+2p:tza,r+(p:i:ia)/Q), (6.95)

-1

where K = k/2. The sum over p is more difficult to calculate because we must first find the
p dependence of the function £g; the algebra has been carried out in appendix B and the final

result is found there.

6.3 Quark model

In the quark model the observables are calculated in exactly the same way as in the cluster

approximation. The only difference will be that the exact wave function {1 will be used
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instead of the cluster approximation function. This will lead to different analytic éxpressions
for the diagrams. In this section we wﬂl derive those expressions. The problem of how to
relate the observables to the different diagrams will not be considered, since it has already
been discussed in the previous section.

The states of the system in the quark model have been given in chapter 5 (equations
(5.11) through (5.13)). In order to make the diagrammatic notation simpler, we will rewrite

them in the form

Q(r1,72,73,74) bL ol al b1 10), (6.96)

T1 7'2 7‘3 7‘4

1) =

=

(rite)i=1..4a

where the wave function is

, (6.97)

Qry, 73, 73,74) = (=1)Y6 (r1+rat+r3+rs) [ K,, 5 K, + K,

v654 (r1 — K,,l)(T:;-Kw) ro— Ky, B V'T2+T3”KUZ‘K1/3

and the number 6, is now defined as
0,f K,, + K,, =0
v = S (6.98)

1, otherwise.

The direct and exchange diagrams are defined in analogy with the cluster approximation

Dy(a1,az,a3,a4) = (6.99)
(=0

= Q(Tl,'f'g,’l"g,?"4) Q(rl—a1,7‘2~—a2,1’3~a3,r4—a4),

(7‘:+6) =1,2,3,4

D
OO

= - Q(r177‘2>r3>r4) Q(Tl~a1,r3—a2,r2~a3,r4—a4),

(7‘x+€)z-1,2,3 4

a

De(a1,ag,a3,a4) = (6.100)

o)
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where the numbers a; are all integers and their sum must be equal to zero. The symmetry
properties of the wave function ) derived at the end of chapter 4, lead to the same topological
properties as in the cluster approximation. However, the invariance under exchange of clusters
in the diagram is valid only if it is done both in the direct and exchange diagrams; t}u"s does
not represent any problem, since when the observables are calculated, for each direct diagram
there is a corresponding exchange one.

Replacing the wave function Q2 by its algebraic form, equation (6.97), in the direct diagram

gives
D, = B PR (21 8(p1 fp2tpatpate) [ Ky __ KutKy ]
P1,P2,P3:Ps | nESy (pl_Km)(p‘l_'Km) pZ“’Kuz P1+P2*Kp1~Kp2

o (—1)”5(pszz+p3+p4:16)[ K,  _ Ky, + Kv,_ A} ,
ves, (m—a1~ K, )(pa—ay—K,,) |p2—0s—-K,, pi+p—-a1-a:—-K, -K,

the rational dummy indices »; have been replaced by p; — € and the sum runs now over the
integer indices p;; since every denominator in the wave function 1 contains only factors of
the form r; — K,,, then when r; were replaced by p; — € the number ¢ was included in the

Bethe momenta by defining
Ki=Ki+e (i=1,2,3,4). (6.101)

We now do the product of the two sums over the symmetric group

Dy=B Y (;1)“+”5(131+P2+P3ip4—46)~
BvESs (pi)i=1..4 (pl“Km)(pl - K, )(p4—Ku4)(p4—-Kw)
/{{uszz  _ AKILZ(KVI +KA’:2) __
(pz"Kuz)(pZ“KVz) (pz"Kﬂz)(pl'*'p?“KVx “sz)
Ky (Kpy + Ky) (Kuo + KB + K) ]
(pz*sz )(P1 +p2— /K\m —f(\uz) (pl +p2 "Km —Euz)(pl +Pz~’fu1 “R:uz) ,

the numbers a; have also been included in the Bethe momenta K,,, in a similar way as we

(6.102)

did with e, by introducing the following notation
E,=K,+a=K,+a+e (6.103)

The sum over p3 is trivial because the only ps dependence is in the delta function (and 4e is

an integer). The remaining sums can be written in terms of the functions £, and Sy, whose
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definitions, together with an analytic scheme to calculate them are given in appendix A;
therefore, we will leave G in the final form

Dy = B? Z (...1)”‘*"’&(?{14}?}4) {KﬂzKVz 62(‘?(}#1??1/1) 52(?#2:?{1/2)

V)“€S4
~K (Ko + Kup) So(Kpy, Koy Ky Koy + Ko (6.104)

_KW(KM + Kﬂz) Sz(j{\m:fvl’?wvfm + j{\m)
+(Ku1 + Kuz)(Kvx + KVz) EZ(KMHRW) 62(1{#1 + Kﬂz: va + ffvz)} .

We will now compute the exchange diagram; using the form of the wave function {1, we

have

D, = —B? Z 8(p1+p2+ps+ps—4e) (6.105)
P1,P2,P3,P4
(‘1);; { Kuz _ Kul + Kuz } }

X = = =
{ues.; (1=K JPa—Kp) 2= Ky, pr4pe—Ky — Ky,

y (=1)” [ Ky Ky, + Ky, } .
VESs (Pl*aleul)(le'a‘;*Ku,;) P3*02—Ku2 P1+P3~al“02"Ku1’Ku2 ,
the rational dummy indices were replaced by integers, and K,, was replaced by j{\,,,. as we

did in the direct term. The product of the expressions inside the curly brackets leads to

B ¥ 1 blpy 4 pytra—te)
BVESy (pi)i:l..A (pl __Kﬂl )(pl ”KVI)(p4-KH4)(p4~KV4)
X [ /{{I—LZKW _— . AKI"Q('KVI + KE) — (6106)
(P2~ K )(p3—Kp,) (P2~ Ky, )(p1+p3— Ky — Ko,)
KUZ(KM +KH2) + (Km +K#2)(KV1 +KV2)

B (p2- Evz )(pr+p3— j{\m - —7{\#2 ) (p1tp2— j{\m - j{\uz )(p1+p3— Eu; - R:uz ) ,
in this last step the notation of equation (6.103) was introduced; notice that in the third term
inside the square brackets the dummy indices py and ps were exchanged, in order to make
the next step simpler. Unlike the direct term, p3 appears in all of the denominators; however
the sum over it is still easily calculated by means of the delta function; furthermore, we will
eliminate € from our result as follows: the Bethe momenta add up to zero; therefore, for any

permutation v we have

K, +K,+K,+K, =0, (6.107)
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which implies

Ky + Koy + Ky + Ky, = 4e, (6.108)
and since the numbers a; add up to zero, then

K, + K, + K,, + K,, = 4e. (6.109)

These last two relations can be used to substitute ¢ in terms of the Bethe momenta, and thus

the evaluation of the sum over p3 leads to

D — B2 Z (—1)&'-+u _
#VESs P1,P2,P4 (pl"Kl-Ll )(pl”Kw)(p‘l"Km )(p4—KV4)
— Buke (6.110)
(Pz—Kuz)((P1+P2+P4—‘Ku1 ""KV:a'_KV:;)
Kﬂz(Klq + KVz) _ KVZ(KM + Kuz)

(P2~ Ky (24P~ Ky = Kui)  (p2— Ko )(P2+Pa— Ky — K o)
U + KK +Ky) |
(p1+p2“Ku1 “Ku2)(p2+p4”KV3 - Kw)

and finally we will write down the remaining sums in terms of the functions £ and S introduced

in appendix A

&
+
=
+
5

De = B2 Z (_1)#+V {KI‘ZKVZ 53(?#1)EV17E#4=E94)Ku27

P')Ves4

e e e

_KF'Z(KVI + sz) gz(fﬂuzw) 52(KuuKV4?K#2?KU3 + KV«;) (6'111)
”KVZ(KM + Ku-z) gz(K#nKvx) SZ(KVUKM:KW’K#:; + Km)
+(KI-L1 + Kﬂz)(Klﬂ + KVz) 53(’K#17—KV1’K#4>KV4>K;11 + Ku.zaKVs + Ku,;)}
The direct diagram for the momentum distribution is
(L

N = Y. Q¥r,ra,ra,ma); (6.112)

(rite€)i=2,3,4
o)

using the functional form of €}, replacing r; by p; — € and » by ¢ — € we have

Ny(r)

[N
N

Bz { Z (“1)V‘5(9+P2+P3+P4“‘45) { Kuz Kvx + Kuz

2
P2.P3.04 | VESs (¢~ K.y )(pa — Kuy) p2— Ky, p2tqg- Ky - va }
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where ¢ is an integer defined on equation (6.35); p2, ps and ps take now integer values, and
I/{\i have been defined as ,
Ki=Ki+e (i=1,2,3,4); (6.113)

squaring the expression inside the curly brackets and exchanging the order of the sums lead

to
_B —1)ptr 8(g+pa+p3+ps—4e)
2 v, q m)( - KVl)Pz,Ps,m (p4 - Ku4)(p4 - Kw)
KK 2K, (Ko + Ko)

(P2~ Ku)(p2 — Kuy) (02— Ky)(p2 + 0 — Ky — Koy)
(Ku, + K (Ko, + Ko,)
(Pz +q- Km - Kuz)(pfl +q - KUI - KVz)

(6.114)

the sum over pj is trivial because p3 appears only inside the delta function; the sums over p,
and ps can be written in terms of the function ¢ defined in appendix A; therefore, our final

result is

(= 1)“*"52(1(“4,1(:«)

Na(r) =

o7 (- Ku)a- K.,)
X [KIJ-ZKW 52(KI-L27KV2) - QK#Z(KW + KVz) sz(k\uw?{\w + f(\vz - Q)
+(Kps + Koo )(Kon + Kop) E2(B s + By Koy + K] (6.115)

We must point out that f,,l + E,,Z can happen to be an integer in which case {, in the
last two terms is not defined; but in such case K,, + K,, vanishes, and as was explained
when () was derived in chapter 4, the second term in ) does not appear when K,, + K,, = 0;
therefore, each term in Ny must be ignored when one of the arguments of the functions ¢,
becomes an integer.

The diagram of the momentum distribution in the quark model is

RS

1
Ne(’l’)';- = = ——- Z Q(T,’I‘g,'f’g,?"4) Q(T,Tg,Tg,T4); (6116)

‘ 2 (rite)iz=2,,4
QO
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following the same steps that led to equation (6.114), we obtain a result very similar to

equation (6.114) but with p, and p3 exchanged in some of the factors

Ne(r) = _Piz_ Z (=)t 8(q+pa+p3+ps—4e)

e - — — s —
v (9’ - Km)(g - Kw) P2,P3,Ps (P4 - Kua)(pfl - KV«;)
KuzKVZ _ 2Kﬂ2(KV1 + KVz)

(P2 — Ko )03 — Kuy) (02— Kpo)(p3 + 0 — Koy — Koy)
(Ko + Koo )(Ein + Kon)
(Pz +q- Kul - K#z)(pB +q- KV1 - sz)

before we evaluate the sum over ps using the delta function, let us first notice that for any

; (6.117)

. permutation v

K, +K,+K,+ K, =0, (6.118)

and therefore

K, + K., + K, + K., = 4¢; (6.119)

the use of this result to eliminate ¢ and the evaluation of the sum over p3 lead to

=5 TS - L

v s (T~ Ky )(7' - k\ul)(m - Eu4)(p4 - ff\w)
Ky Ko —_ 2K#2(Ku1 + sz)
(p2 - ff\ P2+ patr— Ky — K,y — f{\w) (p2 — th)(p2 + ps — K - f{\w)
(B + Ky )(Ky + Koy

(Pz +7r - Km uz)(p2 +ps— K Kw)]

in appendix B it is explained how to evaluate double sums of the kind that we have here,

(6.120)

which we denote as Sy; therefore, we will finally leave the result in the following form

No(r) = _B2_z (—1)mtv

s = B
Vi (T - Kll-l)(r - KU1) [ ’
“2KH2(KV1 + sz) 52(/K\#4"?{\V47/K\u2’j{\vs + f(\’/é)

Kuz Sz(k\uuk\uqak\m)?{\ul +E{\V3 ++/K\Vé _T)

(K + K Koy + Ko) 5By Koy, Ky + Ky Koy + Koy +7)] (6.121)

6.4 Summary

Analytic expressions have been derived for the dynamical functions related to scattering

experiments. Cluster diagrams have been used, and all of the functions can be derived from
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a few general diagrams. In the quark model the functional form of the diagrams has been
written in terms of the functions ¢ and §; these functions can be calculated as a finite sum
of simple rational functions using the algorithms developed in appendices A and B.

The functional form of the diagrams in the cluster approximation can be found in appéndix
B. They also involve functions £; at first sight it may seem that the results of the cluster
approximation are more complicated, but that is not the case —even though the quark model
results were written in a more compact form, they involve sums over the symmetric group.
The direct diagrams in the cluster approximation lead to the simple results of the impulse
approximation, and they constitute a test of the results of section 3.5, which were derived in
a very intuitive way.

Since the derivation of the analytic form of the diagrams has required some tedious
algebra, it is important to develop some kind of test to make sure the results are correct.
The first test comes from the topological properties mentioned above; each diagram must
be invariant under exchange of clusters, exchange of quarks inside one cluster, and mirror

reflection across the vertical symmetry axis. A second test is provided by the following sum

rules
> Nj(p) = Dj(0,0,0,0), (6.122)
r

3 [Da(0, 9, ~4,0) + De(0, ¢, —4,0)] = 0, (6.123)

where the index j stands for direct or exchange diagram. The first sum rule arises from the
way the dynamical functions have been normalized; the second one is the statement that the
sum of the same-color correlation function must vanish, as required by the exclusion principle.
Both sum rules must be satified in the quark model and in the cluster approximation.

The deuteron states have a wave function with terms which have products of three factors
in the denominator; each simple factor is the difference between one of the dummy indices p;
and one of the Bethe momenta (or sums of two of such factors). We do not know the form
of the deuteron states in the three-color case, but we suspect that it would have a similar
general form, with products of five terms rather than three; the analytic expressions for the
observables could then be calculated in a similar way as done in the two-color case, but we

would encounter also functions 54 and Ss, in addition to S5 and S3. The generalization of the
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functions S would be a simple task, following the technique of appendix B; However, even
if the results could also be written in a compact form as in this chapter, difficulties would
“arise when one tries to obtain nqmerical results; instead of the 288 terms produced by the
sums over the group S4 we would be left with 259,200 terms arising from the permutations
of the six quarks in the three-color case. Thus, the computing time would increase by three
orders of magnitude. To make the problem manageable, one could try to identify terms which
should be identical, using symmetry properties of diagrams; otherwise approximations would
have to be used, such as, neglecting certain terms in the sum.

The approximations based on the effective theory are easier to generalize to the three-
color case. That is another argument in favor of testing its results in simple models like the
one in this dissertation. A detailed, realistic description of the nucleus being very difficult,
one may opt to introduce a cluster model or an impulse approximation; however, as we will

see in chapter 7, under some conditions these approximations may not be valid.



Chapter 7

Results

In this chapter we show the results obtained for the observables discussed in chapter 6, both
in our quark model and the two approximations to it. All momenta will be given in units
of 1/R, where R is the diameter of the nucleon . Some comments will be made about the
results obtained; chapter 8 contains also some discussion of the results.

We will concentrate mainly in the cases I = 2R and L = 5R because our estimate for the
deuteron is within this range, as we mentioned in chapter 6; the value of L = 5R seems to

be the one that is most consistent with the energetics of the deuteron.

7.1 Momentum distribution

The exact momentum distribution N(p) is a monotonically decreasing function, which decays
asymptotically as p~*. In the case L = 5R (figure 7-1), it decreases 6 orders of magnitude
from p = 0 to p = 20/R (= 4GeV). Figure 7-2 shows the results for the high density case,

L = 2; at larger values of the parameter L, N(p) decreases faster.

The impulse approximation reproduces remarkably well the exact result; not only in
its asymptotic form (p~*), but also at intermediate momentum p. The contribution from
exchange terms to the quark model result is very small; that is also the case in the cluster

approximation; The results from both approximation methods are very similar.

'This choice of units is explained in the section on units in chapter 5
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Figure 7-1: Momentum distribution in the quark model and cluster and impulse approxima-
tions, for L = 5R.



CHAPTER 7. RESULTS _ 109

10 ' 1 ' ] . 4 L} ¥ | ]

®
o : Quark model
107 x : Q. model(direct term) .
+ : Impulse approx.
A : Cluster approx.
10° F -
¥ .
-3
10°F o -
> A
#
10° F i
&
10° F 2 i
£
2
. % g
10" -
z
* g
2
4 2
10 ek L ‘ 1 . 1 . 1 Lﬁ.
0 10 20 30 40 50

p (units: 1/R)

Figure 7-2: Momentum distribution in the quark model and cluster and impulse approxima-
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CHAPTER 7. RESULTS'- , : 110

10 P 3 Y T ¥ T o T
&

x : Isolated nucleon
10"k o : Quark model 4

+ : Impulse approx.

X A : Cluster approx.
T y
o)
A
X
Tl T .
z e
X
10" ¢ ]
Xg
Xg
sl X4
10 F xf a §
X
X8
x B
© X$x$
107 F Sy
10'7 ] ¥ , I A 1 .
0 5 10 15 20

p (units: 1/R)

Figure 7-3: Quark momentum distribution in the isolated nucleon, and inside the deuteron

(in the case L = 5R).
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The momentum distribution of the nucleus is almost identical to that of one cluster,
as shown in figure 7-3. Therefore, we do not obtam the behavior expected from the EMC
effect; i. e. modification of the quark-momentum distribution inside the nuclear medium.
However, the momentﬁ.m distributions derived from the EMC results are given in the infinite
momentum frame; also, the effect is very sma,]l’for light targets such as the deuteron. Perhaps
this is the reason why the impulse approximation has worked so well. At small momentum we
do not have enough points to decide whether the situation is the same. The limitation in the
number of points comes from the choice of a finite volume in our model, which is necessary
to maintain the clusters bound to the nucleus.

The momentum distribution can be used to calculate the kinetic energy, as explained in

chapter 2. The kinetic energy is a one-body operator and in units of b is given by

(2”R> }:p ap+b by); (7.1)

using the definition of the momentum distribution, equation (2.36), it can be written as
2rR\?
(TY = n (_”L_) S 2N (r). (7.2)
r+1/2
‘Table 7-1 shows the kinetic energy for a few values of the parameter L. To obtain the values
in the table, the infinite sum in equation (7.2) was calculated approximately by adding a

finite number of points at small momentum r, and beyond that we used the asymptotic form

of N(r) which gave us a series that could be summed analytically.

7.2 Different—color correlation function

When L and R are of the same order of magnitude, the different—color correlation function
has a minimum at ¢ = 27 /L, and a maximum at ¢ = 4w /L. As a consequence, the distance
between two quarks with different color is most likely close to L/2. Beyond the maximum,

D(q) decreases monotonically as g2 (see figure 7-4).

Exchange terms are small compared to direct ones. The impulse and cluster approxima-
tions are very close to the exact results as shown in figures 7-4 through 7-6. The agreement

is not as good as it was for the momentum distribution, but it is still good.
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r| @ | W | @) | Bx

2R |10.244|-4.702| 5.542 | 5.511
5R | 2.041 |-2.453|-0.412|-0.424

10R | 1.073 |-1.971|-0.898 | -0.900
15R | 1.033 |-1.981 |-0.948 | -0.950
50R.| 1.006 |-2.006 |-1.000 |-0.996

Table 7.1: Kinetic, potential and total energies, in the quark model, calculated from the
momentum distribution and different—color correlation function. The last column (Eg) is the
value obtained directly from the Bethe momentum K. All values are in units of b(~ 40MeV").

With the different—color correlation function, the expectation value of the potential energy
can be calculated as follows. The potential energy in our model is the two-body operator (in’
units of b)

2R
U= A az+qu_qb,ap; (7.3)
P

its expectation value can be calculated in terms of D(g) (chapter 2). From the definition of

D(q), equation (2.94), we have

() = - 22223 (g, (7.4)

In the case that we are studying, 84 = n = 4. The infinite sum has been calculated approxi-
mately by adding a finite number of points at small momentum transfer ¢, and beyond that
the asymptotic form of D(q) was used which gave a series that was summed analytically. The
results are in table 7-1.

The rate at which D(q) decreases remains almost the same for different values of the
parameter L. For instance, both in figure 7-5 and in figure 7-6 (L = 2R and L = 50R) D(q)
is close to 3 x 1072 at ¢ = 4/R. However, the density of points in the domain of D(q) in a
given interval is 25 times greater for L = 50R than for L = 2R; therefore, the sum in equation
(7.4) does not change drastically with L (the binding energy of the clusters amounts for most
of the potential energy). For example compare the different values of (U) in table 7-1.

Table 7-1 also shows the total energy. We saw in chapter 5 that the eigenstates of the
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Hamiltonian are easily obtained in terms of the Bethe momentum K ; therefore, transfofnajng
equation (4.110) into units of b and comparing with equations (7.2) (and 7.4) we obtain the

relation

(Re Y - (Im ) = Y0 N(p) - 5595 . Dla). (1.5)

The last column in table 7-1 are the results obtained from the Bethe momentum K (table

4-1), using the relation

(H) =4 (-21;—]-2-)2 (Re K2 - (Im K. (7.6)

Equation (7.5) can be used to test the numerical results that we have obtained. If the
numerical results for fhe quark-momentum distribution and the different-color correlation are
correct, they must satisfy the sum rule defined by equation (7.5). The good agreement of the
last two columns in table 7-1 (keeping in mind that both results include numerical error),

indicates that this is in fact the case.

7.3 Elastic form factor

The exact results for the elastic form factor show that exchange terms are important (figures
7-7 and 7-8). At large momentum transfer ¢, both direct and exchange terms go to zero as
q~8; however, for small values of L (L < L,, where L, ~ 87), the exchange term is greater
than the direct one and the elastic form factor becomes negative (the points where F' is
negative are indicated by a double circle in figures 7-7 and 7-8). The larger the parameter
L, the faster F(q) decays.

’I‘hé results derived from the impulse and cluster approximations are very different from
the exact values. Their asymptotic form is ¢* instead of ¢~®. The exchange term in the clus-
ter approximation does not change the result from the impulse approximation significantly;
therefore, the disagreement between the “theoretical” result and the “experimental” data is
not due to quark exchange effects. The main source of the disagreement is the assumption
of separability of the state of the deuteron, as the product of a term depending on cluster

coordinates and another part that depends on internal coordinates of the nucleon.
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Figure 7-5: Different—color correlation function for L = 2R.
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In the case L = 5R, due to the discrete nature of the momentum transfer, our model
does not give any information between ¢ = 0 and ¢ = 5/R (~ 1GeV'). At g = 5/R the two
approximations are close to the exact result, but for ¢ > 10/R they differ by several orders

of niagnitude.

7.4 Same—color correlation function

The same—color correlation function C(gq) gives the coefficients in the Fourier series for the

probability of finding two quarks at some distance of each other:
1 i 25) gz .
Pe(e) = 7 ;e (Z)e=c(g); (7.7)
thus the probability that two quarks of the same color be at the same point is
1
P0) = 7 Y Cla). (7.8)
q

But according to the exclusion principle this quantity must vanish and so must the sum of

C(q)
> C(g)=0. (7.9)

The direct term of C(q) is always positive and therefore it viélates the exclusion principle;
but when exchange is included ), C(g) becomes zero. Unlike the different~color correlation
function, C(g) decays faster the larger the value of ‘L. The result obtained from the impulse
approximation does not lead to 3>, C(g) = 0, because it does not include quark exchange.
Moreover, the domain of Cry4 includes only every other term in the domain of C(gq) from the
the quark model, as has been mentioned in chapter 6.

The cluster approximation introduces exchange thereby making the sum of C (g) vanish.
However, the function obtained is not a good approximation to the exact result. Even though
Cc 4 has the correct domain, at every other point it is derived from the exchange term alone
and in the other points from both direct plus exchange terms. As a result, Cc4 fluctuates

from point to point. The data for L = 5R is shown in figure 7-9.
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Figure 7-7: Elastic form factor for L = 5R. The double circles represent the points where
the quark model result becomes negative.
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the points where the quark model result becomes negative.



CHAPTER 7. RESULTS

ICl

10

10°

10

10

o :Quark model
N x : Q. model(direct term)
Z + : Impulse approx.
X A : Cluster approx.
X
°v X
X
X
X
o + XX x
©
A + Vv
Y
© g v
© v v
© + Vv
v
o *
© +
© @)
©
5 10 15

q (units: 1/R)

120

Figure 7-9: Same-color correlation function for L = 5R. The upside-down triangles and
double circles represent those points where C' is negative



CHAPTER 7. RESULTS 121
7.5 Coulomb sum rule

The Coulomb sum rule can be calculated from the correlation functions and the elastic
form factor. Equation (3.36) relates R(g) to the total correlation function P(g¢); comparing
equations (2.90) and (2.92) we obtain the correlation function P(g) in terms of the same- and

different-color correlation fuhctions, and thus the Coulomb sum rule becomes
. _
R(g) = 7 [1+C(9) +2D(g)] - | F(a) I*- (7.10)

The Coulomb sum rule R(g) in the case of the deuteron saturates at about 5/R (~ 1GeV),
where it approaches the value 1/4 (four quarks). For larger parameters L, it saturates even
faster (see figures 7-10 and 7-11). In the observables discussed so far, the cluster approxima-
tion has always led to a direct term that agrees with the impulse approximation result, plus
a small exchange correction. In the case of the Coulomb sum rule the situation would still
be the same if we assumed that the nucleons were composite objects with certain internal
spectrum that could be excited. This is not the way the impulse approximation is usually
used; for example, in quasielastic scattering the nucleons are normally regarded as immutable
objects whose internal stucture is fixed (“closure” approximation). With this assumption, the
square of the elastic form factor of the nucleon can be factored out; therefore the Coulomb
sum rule in the impulse approximation goes asymptotically to zero. On the other hand,
in the cluster approximation by replacing the nucleon operators At by a superposition of
quark operators, it is implicitly assumed that the complete space of the system is spanned
by superpositions of four quark operators, which is consistent with the quark model.

The cluster approximation gives good results for the Coulomb sum rule (even if only
the direct term is considered), while the impulse approximation does not. Ry4 falls quickly
to zero, in the case I = 5R; at larger volume L, it rises a little closer to the exact result
(figures 7-10 and 7-11), because under those conditions the system looks more like two clusters

without overlap.

Figure 7-12 shows the function S(¢) introduced in chapter 3:

5(g) = 208)

= g (7.11)
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Figure 7-10: Coulomb sum rule for L = 5R.
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Figure 7-12: Hadronic Coulomb sum rule, S(g), for L = 5R. On the left are the results from
the impulse plus closure approximations, and on the right from the quark model and cluster
approximation.

where f(g) is the nucleon’s elastic form factor. In the impulse approximation this function
goes asymptotically to one. If one tries to define the same function in the quark model or
cluster approximations (figure 7-12), which are both quark theories, the result would be a
function that increases without limit, as pointed out by Horowitz [13].

In scattering experiments, both functions R(g) and S(g) are of interest. At small energy
and momentum transfer, where the internal structure of the nucleons is not excited, S(q)
can be measured and it can be confirmed whether the target is made up by nucleons with a
fixed form factor f(g). Likewise R(g) should prove to be of interest as we move into larger

momentum and energy transfer.



Chapter 8

Summary and conclusions

The purpose of this project has been to test what kind of observables, related to scattering
experiments, would be most sensitive to quark effects in nuclear targets. Our approach to
the problem consisted in introducing a simple quark model of the nucleus, with the minimum
aspects of quark dynamics that may lead to the emergence of quark effects. An effective
hadron theory was extracted from the model, in which the nucleus is viewed as a system of
nucleons, rather than quarks. The results from the quark model were considered as “experi-
mental” data, and the search for quark effects was conducted by comparing those data with
the “theoretical” predictions of the effective theofy.

The quark model developed here has been based on the model for nuclear matter intro-
duced by Koltun et al[17,18,19,20]. It has the advantage of leading to an exactly solvable
Hamiltonian, with eigenstates of the Bethe ansatz type. In the ground state, the quarks are
all bound into clusters; there is also a sequence of excited states which are of the cluster
kind. This property has led to the existence of an effective hadron theory which reproduces
the cluster energy spectrum very accurately. The effective Hamiltonian is also of the Bethe
ansatz type and therefore exactly solvable. Another interesting feature of the model is that
the cluster energy spectrum resembles that of a system of fermions, even in the case when the
clusters contain only two quarks. In view of this property, we have restricted our treatment to
quarks with only two, rather than three colors, which simplified the calculations considerably.

If the only role of quark dynamics in the nucleus were to fix the internal structure of the

125
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individual nucleons, then the impulse approximation would be valid. To test this vhypothesis,
we have constructed an impulse approximation which has been used to calculate some dy-
namical functibns. This caiculations are done assuming two independent levels: the motion
of nucleons inside the nucleus which is studied with the effective théory, and the motion of
quarks inside the ﬁucleon, described by the quark Hamiltonian. The intrinsic properties of a
nucleon are considered to be independent of its interaction with other nucleons.

One of the reasons why the impulse approximation may fail is because of quark exchange.
The wave function must be antisymmetric under the exchange of any two quarks, even if
they belong to different nucleons. The effects of quark exchange have been obtained by
introducing a cluster approximation. In this approximation scheme the nuclear states were
derived from the eigenstates of the effective Hamiltonian, replacing the elementary nucleon
creation operator by the operator that creates a cluster of quarks. The results from the
cluster approximation have been separated into direct plus exchange terms. The direct terms
lead to the same results of the impulse approximation, and the exchange terms are corrections
due to quark exchange.

We studied a deuteron-like system, and investigated the behavior of several dynamical
functions which are all related to scattering theory: the quark-momentum distribution, the
quark-correlation functions, the elastic form factor, and the Coulomb sum rule. Analytical
expressions were obtained for those observables, using an original technique which involves
the use of two functions that we have dubbed £ and S (appendices A and B). In developing
this technique, two crucial elements have been the use of the momentum representation of
the Bethe ansatz[22], and the simple form in which we rearranged the states of two clusters
(appendix C).

Some selected results have been presented and discussed. These numerical results were
obtained using the algorithms developed in appendices A and B. The results have been shown
in units defined by two constants R and b, that are directly related to the diameter and mass
of the nucleon. The parameter that determines the mathematical form of the observables is
the ratio of the nuclear volume L, to the nucleon’s diameter B. We have shown results for

the cases L = 2R and L = 5R which is the range where the deuteron is.
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Our results show that the two épproximations based on the effective hadron theory are
very successful in explaining the quark-momentum distribution and the different-color cor-
relation function. This is not a coincidence, because these two observables are the ones
that determine the va.lﬁe of the total energy; and in the construction of the effective theory,
agreement with the energy spectrum was the guideline. Both approximations have failed
to reproduce the asymptotic behavior of the elastic form factor. Furthermore, if the nucle-
ons in the effective theory are considered as composite systems with an internal structure
that can be excited, the resulting Coulomb sum rule is in good agreement with the quark
model. However, if the intrinsic properties of the nucleon are considered invariant (“closure”
approximation), the Coulomb sum rule becomes very different from the “experimental” data.

Contrary to what was expected, the results of the impulse appro;dmation appear to
be better than those of the cluster approximation. This striking result means that quark
exchange is not the dominant source of error in the effective theory. The discrepancy with
the “experimental” data arises mainly from the fact that the state of the deuteron cannot be
factored into a part that depends only on cluster coordinates, and another part depending
on the internal structure of the clusters. Therefore, we conclude that the anomalies found in
the large momentum behavior of the elastic form factor and of the Coulomb sum rule are the
signature of a quark dynamical effect, different from quark exchange. Based on the results of
the model, we conjecture that in a real scattering experiment, the elastic form factor and the
Coulomb sum rule may be the two observables which are the most sensitive to quark effects.

Our model does not lead to the property of the quark-momentum distribution implied by
the EMC effect. Namely, our results for the deuteron are very close to the quark-momentum
distribution of the isolated nucleon. We point out that the EMC effect is within a highly
relativistic domain which escapes the scope of our model. Furthermore, the EMC effect is
small in light targets such as the deuteron.

The hypothesis of nucleon swelling mentioned in the introduction does not account for
the effect that we observed in the elastic form factor. If we assumed that the nucleon radius
R were larger inside the nucleus, we would obtain a form factor closer to the “experimental”

data. However, even if R is increased, the asymptotic behavior of F(q) is still ¢=*. The
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“experimental” data decays asymptotically two ofders of magnitude faster than that (F(g) ~
) q;G). In order to reproauce the exact behavior, we would have to assume a different functional
shape for the formrfactor of the nucleon inside the nucleus.

To close this chapter, we will discuss some possible extensions of our model, and future
projects inspired by it. First, it would be of interest to extend the model to the three-color
case. We do not know the momentum representation of the Bethe ansatz in the three-color
case, but we expect that it could be obtained as a generalization of the two-color problem,
which is the case in configuration space. The analytic expressions for the observables could
then be calculated in a similar way as done in the two-color case. We anticipate that we
would encounter also functions S4 and Sy, in addition to Sy and S3. The generalization of
the functions S would be a simple task, following the technique of appendix B. However, even
if the results can still be written in a compact form, the computing time necessary to obtain
numerical results would increase significantly. The number of iterations in the algorithms
increases as n!2, as explained at the end of chapter 6. This complication does not completely
rule out the possibility of studying the three-color problem, since in the two-color case the
computing times are only of the order of a few minutes of CPU in a VAX 8600 computer.

Another extension of our model that also seems feasible and of interest is the study of
systems with a larger number of clusters. If the number of clusters is increased, we still have
the advantage that the eigenstates are known [22]; however, writing those states in a simple
form as we did in the case of two clusters may not be an easy task. Furthermore, we have
again the same complication as in introducing more colors; i. e. the length of the algorithms
increases very rapidly as the number of quarks increases. More degrees of freedom could be
introduced to make the model more realistic; for example spin and isospin could be included.
Kebukawa[45] has generalized his result in momentum representation to the case of spin and
isospin 1/2; however, this extension makes the problem of calculating dynamical functions
very difficult.

Personally, we find more attractive a further investigation of the anomalies encountered
in the elastic form factor and Coulomb sum rule, than an extension of the model. The very

different behavior of the Coulomb sum rule when the “closure” approximation is introduced,
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can be used to test whether the internal structure of clusters plays an important role within
the quasielastic domain. The following é:cperiment could provide such a test: Suppose we only
look at scattering events in which the energy transfer has an upper bound; the bound, wnae
could be chosen such that the energy transfer is not enough to excite the clusters from their
internal ground state. The iesponse function R(g,w) can then be calculated in the quark

model, and under the condition of an upper bound in w, the Coulomb sum rule becomes

Re(q) = el_ii% Z R(g,w); (8.1)
w:%-}-e
and from it, the function S.(g) is obtained
| Re(q) |
S{g)=n . 8.2
(2) 7(0) (8.2)

We believe that there are two possible outcomes of the experiment. First, it may happen that
Se(g) goes asymptotically to one, as it sifbuld be the case if the form factor of the nucleons
is in fact a constant and can be factored in the function Re(g). But, as we found in the case
of the elastic form factor, if one insists in separating it as the product of a hadronic part
times the intrinsic form factor of the nucleon, the last one has to be modified. Assuming
a bigger effective radius R would not be enough. A different functional form )?(q) would
have to be introduced, which should decay faster than f(g). We conjecture that the same
may happen when one tries to write R.(g) as a product of a nucleonic correlation function
times the square of the nucleon’s form factor; the nucleon’s form factor f(g) may have to be
replaced by f (¢). Thus, the denominator in 8.2 would decay slower than R, and the result
would go asymptotically to zero.

In order to conduct the proposed experiment, we must be able to calculate the response
function. This seems feasible, since the inelastic form factor can be computed in a similar
way as the elastic one; then the problem would be to identify which final states contribute to

the response function. Since the energy transfer has been given an upper bound, that should

be a tractable problem. It remains as a topic for future research.



Appendix A

Analytical evaluation of series

All of the infinite sums that we obtain in the quark model and the approximation schemes can
" be summed analytically, because the functions being summed are simple rational functions.
If f(2) is an analytic function on the complex plane, with only isolated singularities, the
following relations are valid as long as the series are convergent [46, page 175] .

Zf(n) = - Z Res [n f(2) cot(rz)], : (A1)

res.f

Z f(n) = > Res[rf(z)tan(rz)], (A.2)

n+1/2 res.f

where the sums on the right hand sides run over the singularities of the function f(z), and
Res stands for the residue of the function inside the square brackets at the points where the
sum is evaluated.

We will introduce an original algorithm to calculate the series, in the case when f(z) is
a rational function with numerator equals to one. In that case a convenient way of finding
the residues of f(z) cot(nz) consists on expanding f(z) in partial fractions. But even if the
denominator of f(z) is a polynomial 01; degree as low as ten, the partial fraction expansion
becomes cumbersome, and even with the help of the computer, we still have the problem that
its algebraic form may take several pages. We need a more compact way of writing the result;
instead of attempting to write down all the partial fractions in the expansion, we will explain
how they can be derived iteratively. To that purpose we will define a couple of functions £

and 7.
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Definition 1 If {21, 2, ... ,zn}vis a set of n complex numbers, none of which is an integer,
the function £ of order n 1s defined in the following way

én(z1,22,...,2n) = Z(m —z) M m—-z)t o (m—z)7h (A.B)‘

m

Definition 2 If {z1,22,...,2n} 15 a set of n complez numbers, none of which is an integer

(21, 22, -y 2n) = Z (m—z)" (m—-2)"1 - (m—2z,)"" (A.4)
m+1/2 )
The series that define ¢, and 7, are convergent for any n = 1,2,..., and absolutely

convergent if n is greater than 1; £ and 7 are related by the relation
(21,22, 2n) = &nlz1 +1/2,22 + 1/2,.. ., 2, + 1/2); (A.5)

in the remainder of this appendix we will concentrate on the function £ only and most of our
results will be also valid for 7, or can be easily generalized. The order of the arguments of £

is irrelevant:
Proposition 4 If vy, vs,...,v, ts any permutation of order n,

En(z1,22,. ..y 2n) = €nZuys Zuny o oy 2 ) (A.6)

When the arguments of £ are repeated, we will write down only one of them, if it is clear

how they must be repeated; for example £,(z) stands for

bn(2) = bnlz,2,..., 2); (A.T)

in this case it is clear that the argument z appears n times, because the index in £, tells us

so. Another example of short notation is
€a(atbctd) =ta(atba—betdc— d) (A.8)
the subindex of the function ¢ will be dropped if it is one:
£(2) = &(=). (A.9)

The function &, is completely defined analytically, for any n greater or equal to 1, by the

following three properties.
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Proposition 5

£1(z) = —7 cot(mz2). ‘ (A.10)

Proposition 6 If z, is different from z,_1, then

gn(zl, . ,Zn_l,zn) — €n~1(21) AR :Zn——2> Zn-—l) - E‘n—-l(zl; MR ZTL-‘27 Zn)- (A.ll)

Zn—-1 — Zn

Proposition 7 If the n arguments of the function £, are all equal

n ﬂ'"_k
an=- Y {i oy G (A.12)

k=¢€,e+2,...,n—€

where the number denoted by the curly braces is defined iteratively by

n n—-1 n-—1
{k} :(k-l){k~l}+(k+1){k+l}, (A.13)

o ={t} =0 (A.14)

Proposition 8 The second order function €5 has the form

72 jo [m(21 — 22)]

= A1l
5.2(21 > 22) sin(mzy ) sin(mzy)’ (A.15)
where j, is the spherical Bessel function
) sin z
Jo(2) = p (A.16)

In what follows we will list some properties of the function ¢ which are used throughout

this dissertation.
Proposition 9
n(z1+m,za+m,...,2n +m) = E€n(21,22,...,2,) Yme Z. (A.17)

Proposition 10

€n(27,25,...,25) = €521, 22, . . ., Zn). (A.18)
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Proposition 11

gn(—zl, =22y —-Zn) = (-—l)n 6,,,(21, 29y ,Zn). (Alg)

Proposition 12
52(2 + m,z) = O0m,0 62(2). (A20)

Proposition 13
bn(z+m,z,...,2) = 8mo En(2). (A.21)

Proposition 14

] real, ifn is even

bn(iz) = Ve e R (A.22)

purely tmaginary, if n is odd

Proposition 15

€n(215- -5 2n) = 277 [€n(21/2, . ., 20 /2) + mn(21/2,. .., 2n/2)]. (A.23)

Proposition 16 If z; # z;4, fori=1,2,...,m, then

m
Eom(215- -+ Zms Zma1, - Z2m) = [H(Zi - 2i+m)"1] (A.24)
i=1
1
X Z (”1)ll+m+lm€m(zl+llm) 224lmsy - - - )Zm-{-lmm)' (A25)
l;,...,lmZO

This last property is very useful in reducing the order of £ when one wants to write down the
explicit algebraic form of it. When the arguments of &,,, are only two, each one repeated m

times, this property takes the simpler form:

Proposition 17 If z; # z3, then

m i m—l

m A T
§2m(z1,zz) = (21 — 22)—-m Z(——l)l ( l ) €m(21, a3 21,225 ,22). (A26)
=0
Proposition 18 If the complez numbers v1,vs,...,vm are all different from zero, then
2 ™ !
bom(ur £ v1,. . Um £ V) = ———— Z (—1)attlmg (ug 4+ 08, w4+ o),

vlfvz.;.fum ll

(A.27)
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where the quantities vl are defined as

m

vl = (=1) v (A.28)

Proposition 19 If p and z are different from zero, then

falpt z,£2) = (-ﬁ—) Fé_(—% - - (_2_;) 1—2-295_%%. (A.29)

In the next chapter we will calculate some multiple series using some of the properties
given here. We have not included a proof of the propositions, since most of them are straight

forward.



Appendix B
Evaluation of multiple series

In this appendix we investigate some multiple series which are encountered throughout the
dissertation. The sum over each of the indices is evaluated using the techniqué described in
appendix A; the absolute convergence of the series defined there imply that the sums can be

computed in any order.

B.1 Three simple multiple series

We will start by obtaining the analytic form of three simple multiple series which are found

in our model. We will call them S;, Sy and Ss.

Definition 3 If n is a positive integer and {z1,2s,...,2,} are complex numbers, none of

them integer, then the function Si(z1,...,2,) is defined as
Si(z1,---,20) = Z §(prt ... +pn) (1~ 2) (P2 — 22) 7 (pr — 20) T (B.1)
Pi1,.-3Pn
Proposition 20

(=m)" jo[m(z1 + -~ + 2n)]
sin(mwzy ) - - - sin(7zy,)

51(21,...,Zn): (BQ)

where jo is the spherical Bessel function of order 0.
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Proof. We first prove it for the simple case n = 1. Since z; is not an integer, sin(7z;) is

different from zero and we have

8(p1) | 1
Si(z1) = e e
(=) %:Pl ! Z1
_ sin(mz) 7 jo(ma)
zisin(mz;)  sin(wz)

Now suppose that the proposition is valid for an arbitrary n.

(=m)" dolm(z1 + -+ 2n)]
sin(mzy) .- sin(rz,)

> St ) (o1 - 2) 7 (o= 2) 7 =

DissPn

if z is replaced by 2z; + pp41, where p,4q is an integer, we have

( 7") [11“(21 + 42y +pn+1)]
sm7r(21 +Pnt1) - osin(mzy)

Z 6(prt- . +pn)(p1~zrpn+1) Yprz2)™t o (pn—zn) ™! =

P1y-Prn

The dummy index p; on the left hand side can be replaced by p; + Pn41

(=m)" jo[m(z14--- +Zn+Pn+1)]_
(=1)Pe+r sin(rzy) - - - sin(rzy,)

Z 6(pr+ .. +Pns1) (p1 - 21)“1 o (pn - Zn)"1 =

P1;Pn

multiplying both sides times (pn41 — znt1) "}, and taking the sum over p,.; leads to

( 77 ]0 zl+ +zn+pn+1)]
sin(7z1) - - sin(7zy,) 1)Prt1 (Ppy1 = Zns1)

Sl(zl,...,zn,zn+1): (B3)

Pn+1
There are two possibilities. First, the sum z; + --- + z, can be an integer m, in which case

we have

jO [7(‘(21+ e +Zn+pn+1)} = 5(p'n,+1 + m),
and equation (B.3) becomes

(D)™ (=m)"

S1(z1, 2o 2nn) = - sin(mz;) - - sin(mzp)(m + zpy1)
_ (=m)ntt sin [w(m + Zn+1)}}
T sin(mzy) - cosin(mzy)sin(rzpgn) L ow(m 4 zpy1)

(=m)"* Golm(z + - - + zny1)]
sin(rzq) - - -sin(mzp41)

; (B4)

which is what we want to prove.
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The second possibility in equation (B.3) is that the sum z; + - - - + 2, is not an integer, in
which case the function j, can be written in terms of the sine function, and equation (B.3)

becomes

S](Zl,. oy anz'n-l—l) =
(=m)* sin[m(z1 + - - + zn)]

o ~1 - -1,
msin(mzy)- - sin(mzy,) Z (Prt1 + 21 + F 20) " (Prt1 = Znga) 7

DPn41

the last sum can be easily evaluated using the results from appendix A

z (pn+1 +zi4 -+ Zn)"l(pn+1 - Zn+1)_1 = £é(zn+17“21 _— — zn)
- Pn+4l

o Jolm(z1it - 4 zn41)]
sin(mzp41)sin(w(z; + -+ + z,))’

. therefore, we have

-+l L
S1(z1, .oy Zny Zn41) = ( 7r)_ Jo [m (= + + Zn+1)];
sin(mz1) - - - sin(7zp11)

which concludes the proof.
The next function that we will define includes some denominators which may appear

twice, making its evaluation more complicated.

Definition 4 If {z1, 25, 23, 24} are complez numbers, none of them integer, then

Sa(21,22,23,24) = D (pr — 21) 7 (p1 — 22) (P2 — 23) " (p1 + P2 — za) 7. (B.5)
P1,P2

If we evaluate the sum over ps we get the result
32(21,22,13,24) = Z(P - 21)_1(17 - 22)—1 €2(23, 22 — p). (B.6)
P
If z4 — 23 = m, where m is an integer; using proposition 11, from appendix A, we have
£2(23,24 — p) = bp;m £2(23);
which leads to the following result.

Proposition 21 If z4 — 23 = m, where m is an integer, then

£2(23)

24 — 23 — 21)(24 - 23— 22)'

(B.7)

52(21,22723, 24) = (
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If z3 and z4 do not differ by an integer, then the two arguments of the function £ in

equation B.6 are never equal, and from proposition 6, appendix A, we have

_ 61(23) - 51(24).

€2(23,24 — p) D+ 7 — 2
and tile result of the sum over p in Sy leads to
Proposition 22 If z; — 2z3 is not an integer,
52(21722, 23,24) = {51(23) - 51(24)] 53(21,22,24 - ZB)- (B~8)
Definition 5 If {z1,...,2¢} are complez numbers, none of them integer, then
53(21, Zz,?s, 24, 25,26) = Z (Pl - 21)”1(171 - 22)~1 (ng)

P1:P2,P3

X (pa — z3) " (p2 — 2za) " (p3 — z5) " (p1 + P2 + Pz — 26) "L

Once again, the order of the sums is arbitrary; evaluation of the sum over p3 gives

Sa(z1,--526) = Y (pr—21) 7 (pr— 22) " (P2 — 23) " (P2 — 24) " €2(25,26 — p1 — p2). (B.10)
P1,p2

If z6 — z5 = m, where m is an integer, property A.8 leads to

€2(25,26 — p1 — p2) = 6(p1 + P2 — m) E2(25);

and the sum over p; becomes trivial

Sa(z1, 22,23, 24, 25, 26) = €a(25) Z(P —z2) (p—z) (m-p—2z)" (m—p—z)".
r

Proposition 23 If zg — z5 = m, where m is an inieger,

53(21,22,23,24725, Za) = 52(25) 54(21, 22,26 25— 23, 26—25-24)- (B-ll)

If z5 and 2z do not differ by an integer, from properties A.3 and A.5 we have

€1(25) — &1(26)
P+ Py + 25 — 26

52(25,26 —P1- Pz) =
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and the sum over p; in equation B.10 becomes a function &3

Sa(z1, 29, 23, 24, 25, 26) = [€1(25) — €1(26)] > (p—21)"(p— 22) " ¢s(23, 24, 26 — 25— p). (B.12)
F4

When zg — 25 — 23, and zg — 25 — 24 are not integers, the use of property A.3 leads to

blonsea =z -p) = Slmilblnre-sop)
€2(23,24) n €1(2z6 — 2z5) — £1(23)

Pt+zst+zs—26 (P+zatz5—2)(p+ 23+ 25— 25)

Using this result in equation B.12 leads to the following.
Proposition 24 If (26 — 25), (26 — 25 — 23), and (26 — z5 — z4) are not integers,
Ss3(z1, 22, 23, 24, 25, 26) = [€1(25) — €1(26)]

X {52(23724) 53(21,22,26—25—24) + {51(26—25) - 61(23)] 54(21,22,26*25—2’4,26“25-23)} -

When (26 — 25 — 2;) is not an integer but (26 — z5 — 2;) equals an integer m, where (i, j)
are either (3,4) or (4,3), then

£2(23,24) — bp.m €2(2;) .
P+zi+25— 28

€3(23,24,26 — 25 — p) =

and from equation B.12 we get:

Proposition 25 If (z6 — z5) and (26 — z5 — z;) are not integers but (zg — z5 — z;) equals an

integer, where (i,7) are either (3,4) or (4,3), then

53(21,22,23,24725726) = [51(25) - 51(26)] (B.13)
€2(2;)

26 — 25 — 2j — z1)(26 — 25 — 2j — 22)(2 — 2;)

X |€2(23,24) €3(21, 20, 26 — 25 — 2;) — (

If z6 — 25 — 23 = l and zg — 25 — z4 = m, with m and [ two different integers

1) za) — 6. m z
€3(23,24,26 — 25 — p) = pt &2 32)3 - Zp; £a( 4);

which with equation B.12 becomes



APPENDIX B. EVALUATION OF MULTIPLE SERIES 140

Proposition 26 If (zg — z5) is not an integer and 2 — z5 — 23 = I, zg — 25 — 24 = m, where

l and m are differeni integers,

€1(z5) — 51(26))

'53(21)'227237347 25>26) = <
23— 24

£2(23) §2(z4)

(26’“35 "23—21)(26-—25 —Z3-——22) - (26“25’24"21)(26"25“24“22)

(B.14)

X

And finally we can have 26 — 25 — 23 = 2 — 25 — 24 = m, where m is an integer; in that

case, from property A.9 we have
53(23, 24,26 — 25 — P) = bpméa(2a).

Proposition 27 If z5 — zg is not an integer, but zg — 25 — 23 = 2zg — 25 — z4 = integer, then

£3(2s)[€1(25) — €1(2s)]

(26 - Z5 — 24 — 21)(25 — 25 — 24 — Zg)‘

(B.15)

53(217 Z2,23,24, 25, 26) =

B.2 Momentum distribution in the cluster approximation

We will now calculate the exchange term of the quark momentum distribution, in the cluster

approximation. We found in chapter 6 that

BB} Xs(p)
Ni(r)= -="2 %" , B.16
()= 4 > (0* +a?)[(p +7)? - K7 (B.16)
with Xg given by
Xg = €g(Lia, 7+ K,2r+ 2ptia,r+p/2+ia/2). (B.17)

To evaluate such a sum we must first find the algebraic dependence of Xg on the integer p,

with the help of the results from appendix A; from property A.14 we have

1
Z (—1)’*‘“”"*"‘54(1'(13',7’-&-](1,2r+2p+iam,r+p/2+ian/2); (B.18)

j:lnm)n:O

the subindices introduced for a and K stand for

o =(-Dla, K =(-1)K. (B.19)
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the terms on the sums in equation B.18 come in complex conjugate pairs because

€a(iao, 7+ K1, 27+ 2p+iam, 7+ /2410, [2) = (B.20)

& iar, 7+ K1, 2r+2p+iat—m, 7+p/2+i01 -0 /2);

hence, the sum over j gives twice the imaginary part of the term with 7 =0

L - bming o ; ;
Xs = ——mlm |i, > (-1) Ea(ia, 7+ K, 2r4+2p+icy,, r+p/2+ia,/2)| ;  (B.21)
;m,n=0
using property A.3 we get
1 - : . .
Xg = ”Z}?ﬁlm { E (~1)7H+""+"c,£3(2r+2p+zam,r+p/2+zan/2,uj,l)} i (B.22)
Jl,mm=0

the quantities ¢; and u;; have been defined as follows

a=(r+ K —ia)™,  ujyp=(1-5)(r+ K)+ j(ia) / (B.23)
And furthermore
1 ! (—1)tming
Xg= ———1T B.24
8% TiKa " {jlgze 3p/2+7+i0, —ioy, /2 (B.24)

X [€2(27 +2p+iam, ujp) — Ea(r+p/2+ian/2,u;j)] } ~

The arguments of the first function £; can eventually become equal, in which case property
A3 can not be used to reduce it to functions £;; writing down explicitly the terms 7 = 0 and
j = 1 in the first factor we have

1
——]
4K ad

! (—1)min o
Xs = m{ Z [(co 1)€2(2r + 2p+ian,, ia) (B.25)

3p/2+'r+zamwzan/2

1

Y1) el 2r+2p+zam,r+Kz)}
=0

by Gk a2, 0s)
=0 3p/2+r+icy, —ia,/2 ’

In the first term the sum over [ was separated from the other two sums; the functions £, that

appear in this last result have the following dependence on p (from properties A.3 and A.8)

£02r+2ptias,ia) = by _rba(ia)
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_ fl(iia)
r+p—ia
(=)™ (ia) ~ (=1'€1(e + K)
2p+r— K +iam
Ei(e+p/2 + iy /2) — &1 (uj1)
P24+ 17— uj +ia,/2

we have used the facts that = is an integer plus €, 2r is an integer and & (e + 4;) = (=1)":(4).

&2(2r+2p+iay,ia) =

E(2r+2ptian,, 7+ K) =

La(r+p/2+ian/2,u51) =

Substituting this results in equation B.25 we obtain the result

1 ! n
Xs = mlm{(co bt cl)g(—‘l)

{ bp,—+€2(ia) £1(ia) }
—7/2 4 ta —tan/2  (r+p—ia)(3p/2+r+ia, —ia,/2)
iy L) st (B.26)
1 o (2p+r—Ki+iam )(3p/2+7 +iam —ian/2) '
LS (=1)™v50(p)
P i (p/247—uji+ian/2)(3p/2+7+iam—ian/2) [’
where the quantities s;,, and v;;, have been defined as
sm = a[(-1)™&(e+ K) - (-1} & ()], (B.27)
vign(p) = (1) [Ea(e+p/2+ian/2) - €1(us)]- (B.28)
The sum ¢, — ¢; is equal to —2K¢, where ¢ is
-1
t= {(7‘ —ia)? ~ Kz] ; (B.29)

and the sum that multiplies the Kronecker delta is

21: (1) idor (B.30)

/2 tia - dan /2 - (r —ia)(r — z'3a);

therefore, the final result for Xg as a function of p is

Xe = 413(13 m {—51"_? (r if(:f)t(izgi??za) (B-31)
1 n
—2Kté(ia) Y (=1) (B.32)

= (r+p—ia)(3p/2+r+icm —ian/2)

1 1
1 ~1)" ~1)™o;
+ z : ' ( )sl,ﬁ +Z (=1) ”J.l,n(p) .
3p/24+r+iam—ia, /2 | 2p+r— K +iamnm /24T —uj +icy /2

I, mmn=0 j=0
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With this result, the sum over p in equation B.16 can now be evaluated; notice that
the number v;;,(p/2) takes only two different values, depending whether p is even or odd;
~ therefore the sum of the last term in Xg must be separated into two sums, one over even

numbers and the other over odd numbers. The final result is

B*B; { iBatéy (i)
Nhr) = === _Tm 6, B.33
() 956Kas | °° K(r —ia)(r — i3a)(r? + a?) (B-33)
1
—gKt{l(z’a) Z €o(Lia, 7+ K,r—ia,(2r—i2a—ia,)/3)
n=0
12
+3 > (1) "sim bo(Lio, r £ K, 7/2— K} /2E 100 /2, (20 — 1200 — i) /3)
{,mn=0
12
+Z§ Z (=1)™ [v51,n(0) €6(£icx/2,7/2£ K /2,7 —uj +ian /2, (27— i2a,m —ia,)/6)
Jilym=0

+50n(1/2) ne(Lic/2,7/22 K /2,7 —uj;+ 10, /2, (20 — 120, — 10, ) /6)] } .

B.3 Exchange diagram in the cluster approximation

To end this appendix we will find an analytic expression for the exchange diagram D! intro-

duced in chapter 6. The final form given in chapter 6 was

9 2
Di’(al,ag,ag,%) = — (E—fﬁ) ZX6(25+a1——a3,0,a1) Xe(2¢+a; —az,az+a3,0), (B.34)
P
with Xg defined by
Xe(by,by,b3) = €g(by —ptia,by+ptia,by+et K); (B.35)

the numbers p,b;,by, and bs are all integers, and € can be 0 or 1/2; the Bethe momenta K

and « are real and no integers. Using proposition 17, Xg can be written in terms of functions

¢ of the third order

— 1 : l+m+n . .
Xe = SK(Ba) lngzo(——l) +m+ £3(b1 —p+iam, bo+p+ian,bs+e+ Kp); (B.36)

we have used here the same notation of equation B.19, and dropped the arguments of Xg

until we get a final form for it. For every triplet (I,m,n), the term (I,1 — m,1 — n) gives
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its complex conjugate; therefore the sum over n can be written as twice the real part of the
term with n equals zero

1

1 . ,
Xe = Re [ z (—1)F™ €3(by ~p+iam,by+p+ia,bs+et+ K;)

~Fo (B.37)

l,m=0
At this point the algebra to reduce the order of the ifunctions £ until we get them independent
of p follows very closely what we did for'Xg in the previous section; namely, we will apply
the results from propositions 6 and 11

1 : by —p+icm, b i) — (b1 —p+iom, b K
Xe=— zRe { Z (_1)l+m£2( 1= P+ i, by +p+ia) — €(by—p+icm,,bs+e+ l):' ’

4K o p+by—bs—¢€—K; +ia

l,m=0

1 [l (-1}
- —.4Ka2R€{Zp+b2—b3—-e—Kl+ia

=0 .
. 2¢;(icx) ! &1(e+ Ky) — €1(iam)
5(2 -b - - -1)™ .
x[(p+b2 1)&2(2&) 2p+bz—~bl+22a ,,;)( 1) p+b3—b1+e+Kl——zam
After a little more algebra we obtain the result
1 dé§(2p+by—b
Xo(b1,b2,bs) = — s Re (2p+b: 12) (B.38)
a (b2 —by—etia) - K
101 e
+3 ¥ T ?
=0 m=m1 (P fi+ba=bs) (P—g1m— 201+ 2510t [ | by)
the numbers d and e;,,, f; and g;,, have been defined in the following way
d = 2K &(ia), (B.39)
em = méb(e+ K) ~ (—=1)*™¢ (i), (B.40)
fi = e+ K —1a, (B41)
gim = —|m|(e+K)+(|m]|-m-1)ia; (B.42)

d is real and e, f and g are complex.

The last result for Xg can be used in equation B.34 to evaluate the sum over p

2 2
D}(a1,a,03,a4) = — (1@1522) zp: (B.43)
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4d §(2p—2e+az—ay) LI elm
Re - + :
(az+a; —i2a)* — k? ;2;1 (p—fi—a1)(p—g,m—Am)
4d §(2p—2e+2az+az—aq) L €in
X Re - - + ;
[ (az+a;+12a)? — k2 J;)nzl (p—fi+az+as)(p—gjn—Bn)

the numbers 4,, and B,, are given by

a; — ag
Ao = ) A:i:l = —as,

B, = — as, Bii = aj — as. (B.44)

The use of the relation Re(z;) Re(z3) = Re[z; Re(z;)] leads to

2
DF(ay,02,a3,a4) = — (4;(212 zp: d2R1R2 ar—as 6 (P—€—Ay) (B.45)
1 101 .. -
+Ridb(p—e—4;)Re J};{)n; = 2f3+a2_a1;,(€ ]
+-1-R2d6(p—e-B )Re 21: 5:“ €jmn
4 | iSon=a 2(2¢-2f;+a1—as)(e—gjn+Bo Am)
! €5
+'3'2'R€J’l omn—_lel,m[p fi—a1)(p- gzm—Am)(;)’ i+ a2+a3)(P— g~ Bn)

+(p-fz~a1)(p-gz,m~ m)(p, f;+az+a3)(p~—g§,n~3n)”'

Here the real numbers R, and R, have been defined as

1
(Ao — A; — i2a) — Kz] ’

Ry = Re [ (B.46)

1
Rz = Re {(Bo — Bl — i2a)2 — K?‘] y (B47)

The sum over p can now be easily evaluated, and the final result for D?(al,az, as, as) is

Dh _ 1 '6 4 Br 2 2
e(al,az,ag,a4) = ———i‘é - Z_i{- {d RiRy 5,12,_.0_3A(2€+a1——a3) (B48)
e:
+R1d A(2¢+ay—az)Re 27
1 ( 1 3) LJ‘——ZOH._Z__]- fj+a2/2—a,1/2)(€"gj’n+Ao“Bm)_
+Rod A(26+a1—as) Re 2 Z “im

(e~ fi+a1/2—a3/2)(e~gjn+Bo—Am)

]"‘0 n=-1
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1 1 :

1 . .

+-2'R€ Z Z el,m [ej,n 54(fl+a1,gz,m+Am:fj“@2~a3;9j,n+Bn)
Hl=0mmn=-1

‘{‘e.;f,n E4(fl+0«1,gl,m+Am) f;-—az —ag,g;,n-%Bn)] } ;

the function A is the simple function

A(n) = (m+ 1) mod 2.
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(B.49)

This result may seem much more comph'cat'ed than the exchange diagram in the quark

model, D(a;, as,a3,a4), which was written in chapter 6 in a more compact form. However,

the result in the quark model involves two sums over the symmetric group S4 and the other

over half of the elements of Sy, for a total of 288 terms, in contrast to the few terms obtained

in the cluster approximation.



Appendix C

The Bethe ansatz for four

fermions.

In this appendix we use the result given by Kebukawa [22] for the momentum representation
of the Bethe ansatz of fermions with two colors, and show how to rewrite it in the simple form
of section 4.3.2; we will consider only the particular case of four particles, two of each color.
In that case the subindex j in the ansatz equations (4.59) and (4.60) takes values from 1 to
4; the superindex a takes only two values, which we will label as —1 and 1. Corresponding
to a = %1 there are two momenta A® which we will simply label At and A~.

Since w®? is antisymmetric, it has only one independent component, which according to

(4.62) is
}r cot™? {—-——-—-————%(A;— A*)} ; (C.1)

w

we are using here dimensionless units in which momenta are given in units of 2r/L. The

auxiliary momenta k$ introduced in equation (4.61) become

1 |47(Kj;—AT) ,
ki = —7-r-cot [___273—— (j =1,2,3,4), (C.2)
- 1 1 47F(Kj~A“) -
ky = - cot [ I (7 =1,2,3,4). (C.3)

The Bethe momenta K; and A® must be the solution to the system of equations (4.59)

147
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and (4.60)
K;j = nj+kf +k (j=1,23,4), (C.4)
A¥ = kY kSRS E A aw (a=-1,1); (C.5)

the quantum numbers {n1,ny,n3,n4, AT, A"} are all integers.

From.the general result given by Kebukawa [22] we have

W= ¥ ¥ ZZA”

1Sm <2 <4 pt L prepy

[.f fU3 4f1/4( ulfvz + ful f;j‘z)] Oi(PhPZ;PS;Ptl;Vl,VZ) IO> (06)

where the following definitions have been made

4 4
Mg = 6 pf+R-XT) 605 ~R-X |, (c.7)
=1 F=1
fJ’a = (P? - k?)ml) (CB)
p;i = nj +pj+p;. (C.9)

The operator Of(py,ps,ps, Pa;11,1y) stands for the product of four creation operators with
indices p1, p2, p3 and py, of which the ones in the positions v; and vy create particles of color
a, and the rest create particles of color b.

We will prove in this appendix that these eigenstates can be written in a simpler form
that involves only the Bethe momenta K; instead of the auxiliary momenta k¥. Since the
creation operator O does not depend on p;? and p; independently, we will make a change of

dummy indices in such a way that the field operators can be taken out of some of the sums;

e
P = [&—Eﬁ} , (C.10)

where [A]™ stands for the largest integer that is less or equal to A. With this definition and

let us define the variables

the p; ’s defined above, we can replace the variables pj and p; by

e, 1t
pf = [p————-’ Qn’] + 75, (C.11)

_ .“nv -
p; = [p32 J] -7 (C.12)
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and the state of equation (C.6) can be written in the form

= YN PR AU + £ £8)] OYpa,pa,papes v, va) [O);

VESy PLyPa TorTa |

(C.13)
here we have used the fact that the indices 1)1 and v can be exchanged and the result is the
same state; the indices v3 and v4 are the positions where there are operators with color b in
of. n going from the sum over distinct pairs (v1,72) to the sum over the symmetric group
S4, we should introduced a factor of 1/4, which has not been written since it only changes
the norm of the state/

The functions f§* take the following forms as functions of p; and r;

-1

fr=a(rn-T3)", (C.14)

where

I$ =« (k;.‘ - [?L%l"l]a) . (C.15)

([”;””‘]U{“;“"J’))

We now notice that

i (pf +97) =

J=1

-
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where the integers ¢; can be either 0 or 1, depending on the parity of p; — n;
€; = (p; — nj) mod 2, (C.16)
-and the integer @ is the sum of all the quantum numbers

4
Q=At+27 4+ n; (C.17)

i=1
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Thus, the function A; ; of equation (C.7), becomes

: 4
A =6p +p2+ps+ps— Q) 5(2(21)1' + 53‘) +2R+ A7~ )‘+) . (C.18)

=1

The operator 0T does not depend on the indices 7;; therefore, the sums over r; can be

evaluated over the functions ff, and the state of equation (C.6) becomes
[’l,b> = Z 5(P1+P2+p3+P4—Q) Z Qu(pl""ypll) Oi(Plr--,P‘i;Vl;VZ) l0> (Clg)
P1ye-nP4 u€54

Here the wave function (1, is given by,

+f= ftfo(fF fm 4 f- fF
3 6(ro+r1+rz+r3+r4~M)f":’f”sf”‘* vl fu + o ”2), (C.20)

To — W

Q

ik

TojyeenT4
1,0 - ’
= 5()\ + AT —€ — € — €3 — 64); (021)

from equation (C.17), and since Q = p1 + - - - + pa, it follows that M is an integer.
The sums over the indices r; can now be evaluated. First notice that from the definition

of the numbers I‘;‘ it follows that
Iy -T; =p; - Kj, (C.22)

which will never vanish, because K; is not an integer; then the product ff f; can be written

as

15 = —(ri=TH) M r; - T7)7
= (F =T5)7 [t =Tf)7 = (r = T) 7]
i+ Iy
— g C.23
p;— K (¢23)
With this relation the wave function becomes
QV(Ph cen ,P4) = "(pus - K,,s)"l(p,,é - Kw)-l (0‘24)

X Z az0g Z 6(ro+ -+ 1a)(ro+ M —w) Y (r1 - I‘f,‘ll)"1 s (rg — I‘S:)‘l;
Toy T4

QXY yoes X4
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the sum over the indices ¢, ..., aq Tuns over values of 1 or -1 for each index, but the indices
oy and ay cannot be equal. The last sum has the form of the function S; defined in appendix

B; using the result found there, the wave function takes the form !

74 = G(ay, az, a3, ay)
’ ‘Q'V ) 3 3 4) = : a’ ’ Qg ? 025
(P1,P2,P3,P4) (P — Koy )(Pus — Kw)m%.:,m“’ ~ M 4+T3 4.4+ T58 ( )
‘where the function G is defined in the following way
i e e T4
G(a1,az,a3,04) = agay sin [r{w + Iy + - + [)] (C.26)

sin(rw) sin(xT'5}) - -sin(algd)

From the definitions of M and I'¢, and using equation (C.5) we have

1 1 RN s o 1 T
w_M_{NI‘gll.{k.‘._*.I‘g: = Z{-z-(k]’_k;).;..i[g%_fl} *_[U}
. =1
Dv; — Ty il
[——H ot )

4
Z aj(py; — Ku;) (C.27)

l\?'i—*

furthermore, the two Bethe ansatz equations (C.4) and (C.5), and the definition of Q imply
Ki+Ky+ Kz+ K4 = Q; (028)

and since the sum of p1, ps, ps and p4 is also equal to ¢, the expression above can be written

as
i 1a
w— M+ P;oz? Tt I‘g: = ”'2' Z O‘J +1 (pl/, - V, = ‘“"2' Z(aj - 1)(pl/j - Kv]'); (0'29)
=1 =1

therefore, the sum over j on the right can be restricted only to those values of j for which
the corresponding indices a; are 1; or equivalently, the sum can be done only over indices j
with a; = —1.

| Going back to the wave function ), the sums over indices a; lead to eight terms; four

of them have half of the indices a; equal to 1, and the other half equal to -1; the other form

'Tor the time being, we assume that w + Tor 4 --- 4+ T2 is not equal to zero; at the end of the chapter we
will consider what would happen when this assumption is not true.
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terms have three identical indices a; and the other one different. The eight terms can be

arranged in the following form

7(4

(va - KVa)(pw - V4)
- G : Gt -Gz

G;l - Gj; + G;z — Gj; V1 V3 V1,3 + Vi ,V4 V1,V
Pvy — Kul Dy — sz Dy +PU3 - KVI - Kl/s Py +pw - Kl’l - KM;

(C.30)

Qu(p17p2>p37p4) =

X

3

here the symbol Gf _; stands for G(ay, g, a3, a4) with aj = 1 only if j is one of the subindices

of G > and the opposite for G ;. For example
13 =G(-1,1,-1,1) = G§,

Now that we have the wave function in a simple analytic form, we return now the sim-

plification of the state |1). Using the anticommutation relations of af and b', we have
O'(p1,p2,P3,P4; V1,V2) = (~1)" ag,,z b}.f,g 3; (C.31)

where (—1)” is the parity of the permutation v . Introducing this last equation into equation

(C.19), and since the integers p; are dummy indices, we can write the state in the form

> 6(p1+p2tpst+pa—Q)Up1,p2, Pz, Pa) G;ElalszsbL |0), (C.32)

Piy-sP4

where the wave function Q(p1,p2, ps, p4) has been defined as

—1)vr?
Q(p17p2:P3)p4) (C33)
VZ‘; (ps — Ky )(ps — Ko,
Gjl - G;; + Gj; — G;z + Gj/; W3 G;x v3 Gjl,vq G;;l Ve :
Y4 —'Klll pZ”KVz Y41 +p3_KV1 “Kug ¥4 +P4 Kul —Kl/.;

this function is antisymmetric under the excahnge of p; with p; and p3 with ps. However, the
wave function does not have to be antisymmetric; for example the following choice of wave

function leads to the same state
_ G-

("’1)V7r4 Gj B G; Gm v3 V1,3
Q — i 1 U ’ . 34
(pl,p27p3,p4) vg.; (p3 - KVs)(p4 - Kw) r ~ Ky, p1+ps— Ky — Ky, (C )

The functions G¥ can be written in a simpler form. Equation (C.26) can be written in

terms of cotangents only; then, From equations (C.1), (C.2) and (C.3) we obtain the following

cot(mk]) — cot(rk; ) = —2 cot(nw); (C.35)
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this relation, and the identity
cot(n'F) = a cot(rky), (C.36)

allow us to write (after some algebra) the two numerators of the function 2 in the form

I

G} - G5 4[cot?(rw) + cot(mw)][2 cot(mw) + cot(mk] ) + - - + cot(wk}) — 2 cot(mk} )],

G -Gy

Il

4[cot®(7w) + cot(rw)]

X [2 cot(mw) + cot(mky) + - - + cot(mk]) — 2 cot(wk;) — 2 cot(nk])];

the common factor inside the first square brackets can be ignored, because it only changes
the norm of the state; and if the auxiliary momenta are replaced by the Bethe momenta,

using equations (C.1), (C.2) and (C.3) we have

47

Gf-G; = —(Q - 2K; - AT — A7), (C.37)
4
GE-G; = Z-Z-(zm +2K; - Q). (C.38)

The wave function thus can be written as

Q(p1,p2,03,P2) = Y (=1 Q- 2Ky, AT A7 2K, +2K), - Q ;
ves, (3 — Ky )(ps — Koy) n - Ky, p+ps— K, - K,
finally, the translational invariance of the state can shown more explicitly if we redefine the
Bethe momenta {K;, K, K3, K4, AT, A"} by substracting @ /4 to all of them. The resulting
momenta are solutions to the two equations (4.68) and (4.69) given in page 53; the state can

then be written in the form

\/— Z Q Q/47 . )p4_Q/4) plapszabl,; ]0) (039)
PlyesP4
where the wave function Q is
(=1)"8(p1+p2+p3+ps) | Ky +(AT+A7)/2 K, +K,
Q ] ] ) = : - 6;1 1 2
(pl P2,P3 P4) y§4 (p3—-Ky3)(p4~—Kw) p1~Ky1 p1+p3—Kyl—K,,3
(C.40)

and the Bethe momenta are given by the solution to equations (4.68) and (4.69). The number

8, means the following: the sum of two Bethe momenta can become zero, in which case the
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algebra that we have used to derive the wave function is not valid; in that case, a similar
procedure to the one we followed leads to the cancelation of the last term in . This is
indicated by the number §,; if the permutation v leads to K,, + K,, = 0, then the last

fraction must be ignored; if the sum is not zero, then the number 6, is given a value of 1.
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